5.3 双向队列¶
在队列中,我们仅能删除头部元素或在尾部添加元素。如图 5-7 所示,双向队列(double-ended queue)提供了更高的灵活性,允许在头部和尾部执行元素的添加或删除操作。
图 5-7 双向队列的操作
5.3.1 双向队列常用操作¶
双向队列的常用操作如表 5-3 所示,具体的方法名称需要根据所使用的编程语言来确定。
表 5-3 双向队列操作效率
方法名 | 描述 | 时间复杂度 |
---|---|---|
push_first() |
将元素添加至队首 | \(O(1)\) |
push_last() |
将元素添加至队尾 | \(O(1)\) |
pop_first() |
删除队首元素 | \(O(1)\) |
pop_last() |
删除队尾元素 | \(O(1)\) |
peek_first() |
访问队首元素 | \(O(1)\) |
peek_last() |
访问队尾元素 | \(O(1)\) |
同样地,我们可以直接使用编程语言中已实现的双向队列类:
from collections import deque
# 初始化双向队列
deq: deque[int] = deque()
# 元素入队
deq.append(2) # 添加至队尾
deq.append(5)
deq.append(4)
deq.appendleft(3) # 添加至队首
deq.appendleft(1)
# 访问元素
front: int = deq[0] # 队首元素
rear: int = deq[-1] # 队尾元素
# 元素出队
pop_front: int = deq.popleft() # 队首元素出队
pop_rear: int = deq.pop() # 队尾元素出队
# 获取双向队列的长度
size: int = len(deq)
# 判断双向队列是否为空
is_empty: bool = len(deq) == 0
/* 初始化双向队列 */
deque<int> deque;
/* 元素入队 */
deque.push_back(2); // 添加至队尾
deque.push_back(5);
deque.push_back(4);
deque.push_front(3); // 添加至队首
deque.push_front(1);
/* 访问元素 */
int front = deque.front(); // 队首元素
int back = deque.back(); // 队尾元素
/* 元素出队 */
deque.pop_front(); // 队首元素出队
deque.pop_back(); // 队尾元素出队
/* 获取双向队列的长度 */
int size = deque.size();
/* 判断双向队列是否为空 */
bool empty = deque.empty();
/* 初始化双向队列 */
Deque<Integer> deque = new LinkedList<>();
/* 元素入队 */
deque.offerLast(2); // 添加至队尾
deque.offerLast(5);
deque.offerLast(4);
deque.offerFirst(3); // 添加至队首
deque.offerFirst(1);
/* 访问元素 */
int peekFirst = deque.peekFirst(); // 队首元素
int peekLast = deque.peekLast(); // 队尾元素
/* 元素出队 */
int popFirst = deque.pollFirst(); // 队首元素出队
int popLast = deque.pollLast(); // 队尾元素出队
/* 获取双向队列的长度 */
int size = deque.size();
/* 判断双向队列是否为空 */
boolean isEmpty = deque.isEmpty();
/* 初始化双向队列 */
// 在 C# 中,将链表 LinkedList 看作双向队列来使用
LinkedList<int> deque = new();
/* 元素入队 */
deque.AddLast(2); // 添加至队尾
deque.AddLast(5);
deque.AddLast(4);
deque.AddFirst(3); // 添加至队首
deque.AddFirst(1);
/* 访问元素 */
int peekFirst = deque.First.Value; // 队首元素
int peekLast = deque.Last.Value; // 队尾元素
/* 元素出队 */
deque.RemoveFirst(); // 队首元素出队
deque.RemoveLast(); // 队尾元素出队
/* 获取双向队列的长度 */
int size = deque.Count;
/* 判断双向队列是否为空 */
bool isEmpty = deque.Count == 0;
/* 初始化双向队列 */
// 在 Go 中,将 list 作为双向队列使用
deque := list.New()
/* 元素入队 */
deque.PushBack(2) // 添加至队尾
deque.PushBack(5)
deque.PushBack(4)
deque.PushFront(3) // 添加至队首
deque.PushFront(1)
/* 访问元素 */
front := deque.Front() // 队首元素
rear := deque.Back() // 队尾元素
/* 元素出队 */
deque.Remove(front) // 队首元素出队
deque.Remove(rear) // 队尾元素出队
/* 获取双向队列的长度 */
size := deque.Len()
/* 判断双向队列是否为空 */
isEmpty := deque.Len() == 0
/* 初始化双向队列 */
// Swift 没有内置的双向队列类,可以把 Array 当作双向队列来使用
var deque: [Int] = []
/* 元素入队 */
deque.append(2) // 添加至队尾
deque.append(5)
deque.append(4)
deque.insert(3, at: 0) // 添加至队首
deque.insert(1, at: 0)
/* 访问元素 */
let peekFirst = deque.first! // 队首元素
let peekLast = deque.last! // 队尾元素
/* 元素出队 */
// 使用 Array 模拟时 popFirst 的复杂度为 O(n)
let popFirst = deque.removeFirst() // 队首元素出队
let popLast = deque.removeLast() // 队尾元素出队
/* 获取双向队列的长度 */
let size = deque.count
/* 判断双向队列是否为空 */
let isEmpty = deque.isEmpty
/* 初始化双向队列 */
// JavaScript 没有内置的双端队列,只能把 Array 当作双端队列来使用
const deque = [];
/* 元素入队 */
deque.push(2);
deque.push(5);
deque.push(4);
// 请注意,由于是数组,unshift() 方法的时间复杂度为 O(n)
deque.unshift(3);
deque.unshift(1);
/* 访问元素 */
const peekFirst = deque[0];
const peekLast = deque[deque.length - 1];
/* 元素出队 */
// 请注意,由于是数组,shift() 方法的时间复杂度为 O(n)
const popFront = deque.shift();
const popBack = deque.pop();
/* 获取双向队列的长度 */
const size = deque.length;
/* 判断双向队列是否为空 */
const isEmpty = size === 0;
/* 初始化双向队列 */
// TypeScript 没有内置的双端队列,只能把 Array 当作双端队列来使用
const deque: number[] = [];
/* 元素入队 */
deque.push(2);
deque.push(5);
deque.push(4);
// 请注意,由于是数组,unshift() 方法的时间复杂度为 O(n)
deque.unshift(3);
deque.unshift(1);
/* 访问元素 */
const peekFirst: number = deque[0];
const peekLast: number = deque[deque.length - 1];
/* 元素出队 */
// 请注意,由于是数组,shift() 方法的时间复杂度为 O(n)
const popFront: number = deque.shift() as number;
const popBack: number = deque.pop() as number;
/* 获取双向队列的长度 */
const size: number = deque.length;
/* 判断双向队列是否为空 */
const isEmpty: boolean = size === 0;
/* 初始化双向队列 */
// 在 Dart 中,Queue 被定义为双向队列
Queue<int> deque = Queue<int>();
/* 元素入队 */
deque.addLast(2); // 添加至队尾
deque.addLast(5);
deque.addLast(4);
deque.addFirst(3); // 添加至队首
deque.addFirst(1);
/* 访问元素 */
int peekFirst = deque.first; // 队首元素
int peekLast = deque.last; // 队尾元素
/* 元素出队 */
int popFirst = deque.removeFirst(); // 队首元素出队
int popLast = deque.removeLast(); // 队尾元素出队
/* 获取双向队列的长度 */
int size = deque.length;
/* 判断双向队列是否为空 */
bool isEmpty = deque.isEmpty;
/* 初始化双向队列 */
let mut deque: VecDeque<u32> = VecDeque::new();
/* 元素入队 */
deque.push_back(2); // 添加至队尾
deque.push_back(5);
deque.push_back(4);
deque.push_front(3); // 添加至队首
deque.push_front(1);
/* 访问元素 */
if let Some(front) = deque.front() { // 队首元素
}
if let Some(rear) = deque.back() { // 队尾元素
}
/* 元素出队 */
if let Some(pop_front) = deque.pop_front() { // 队首元素出队
}
if let Some(pop_rear) = deque.pop_back() { // 队尾元素出队
}
/* 获取双向队列的长度 */
let size = deque.len();
/* 判断双向队列是否为空 */
let is_empty = deque.is_empty();
/* 初始化双向队列 */
val deque = LinkedList<Int>()
/* 元素入队 */
deque.offerLast(2) // 添加至队尾
deque.offerLast(5)
deque.offerLast(4)
deque.offerFirst(3) // 添加至队首
deque.offerFirst(1)
/* 访问元素 */
val peekFirst = deque.peekFirst() // 队首元素
val peekLast = deque.peekLast() // 队尾元素
/* 元素出队 */
val popFirst = deque.pollFirst() // 队首元素出队
val popLast = deque.pollLast() // 队尾元素出队
/* 获取双向队列的长度 */
val size = deque.size
/* 判断双向队列是否为空 */
val isEmpty = deque.isEmpty()
# 初始化双向队列
# Ruby 没有内直的双端队列,只能把 Array 当作双端队列来使用
deque = []
# 元素如队
deque << 2
deque << 5
deque << 4
# 请注意,由于是数组,Array#unshift 方法的时间复杂度为 O(n)
deque.unshift(3)
deque.unshift(1)
# 访问元素
peek_first = deque.first
peek_last = deque.last
# 元素出队
# 请注意,由于是数组, Array#shift 方法的时间复杂度为 O(n)
pop_front = deque.shift
pop_back = deque.pop
# 获取双向队列的长度
size = deque.length
# 判断双向队列是否为空
is_empty = size.zero?
可视化运行
5.3.2 双向队列实现 *¶
双向队列的实现与队列类似,可以选择链表或数组作为底层数据结构。
1. 基于双向链表的实现¶
回顾上一节内容,我们使用普通单向链表来实现队列,因为它可以方便地删除头节点(对应出队操作)和在尾节点后添加新节点(对应入队操作)。
对于双向队列而言,头部和尾部都可以执行入队和出队操作。换句话说,双向队列需要实现另一个对称方向的操作。为此,我们采用“双向链表”作为双向队列的底层数据结构。
如图 5-8 所示,我们将双向链表的头节点和尾节点视为双向队列的队首和队尾,同时实现在两端添加和删除节点的功能。
图 5-8 基于链表实现双向队列的入队出队操作
实现代码如下所示:
class ListNode:
"""双向链表节点"""
def __init__(self, val: int):
"""构造方法"""
self.val: int = val
self.next: ListNode | None = None # 后继节点引用
self.prev: ListNode | None = None # 前驱节点引用
class LinkedListDeque:
"""基于双向链表实现的双向队列"""
def __init__(self):
"""构造方法"""
self._front: ListNode | None = None # 头节点 front
self._rear: ListNode | None = None # 尾节点 rear
self._size: int = 0 # 双向队列的长度
def size(self) -> int:
"""获取双向队列的长度"""
return self._size
def is_empty(self) -> bool:
"""判断双向队列是否为空"""
return self._size == 0
def push(self, num: int, is_front: bool):
"""入队操作"""
node = ListNode(num)
# 若链表为空,则令 front 和 rear 都指向 node
if self.is_empty():
self._front = self._rear = node
# 队首入队操作
elif is_front:
# 将 node 添加至链表头部
self._front.prev = node
node.next = self._front
self._front = node # 更新头节点
# 队尾入队操作
else:
# 将 node 添加至链表尾部
self._rear.next = node
node.prev = self._rear
self._rear = node # 更新尾节点
self._size += 1 # 更新队列长度
def push_first(self, num: int):
"""队首入队"""
self.push(num, True)
def push_last(self, num: int):
"""队尾入队"""
self.push(num, False)
def pop(self, is_front: bool) -> int:
"""出队操作"""
if self.is_empty():
raise IndexError("双向队列为空")
# 队首出队操作
if is_front:
val: int = self._front.val # 暂存头节点值
# 删除头节点
fnext: ListNode | None = self._front.next
if fnext != None:
fnext.prev = None
self._front.next = None
self._front = fnext # 更新头节点
# 队尾出队操作
else:
val: int = self._rear.val # 暂存尾节点值
# 删除尾节点
rprev: ListNode | None = self._rear.prev
if rprev != None:
rprev.next = None
self._rear.prev = None
self._rear = rprev # 更新尾节点
self._size -= 1 # 更新队列长度
return val
def pop_first(self) -> int:
"""队首出队"""
return self.pop(True)
def pop_last(self) -> int:
"""队尾出队"""
return self.pop(False)
def peek_first(self) -> int:
"""访问队首元素"""
if self.is_empty():
raise IndexError("双向队列为空")
return self._front.val
def peek_last(self) -> int:
"""访问队尾元素"""
if self.is_empty():
raise IndexError("双向队列为空")
return self._rear.val
def to_array(self) -> list[int]:
"""返回数组用于打印"""
node = self._front
res = [0] * self.size()
for i in range(self.size()):
res[i] = node.val
node = node.next
return res
/* 双向链表节点 */
struct DoublyListNode {
int val; // 节点值
DoublyListNode *next; // 后继节点指针
DoublyListNode *prev; // 前驱节点指针
DoublyListNode(int val) : val(val), prev(nullptr), next(nullptr) {
}
};
/* 基于双向链表实现的双向队列 */
class LinkedListDeque {
private:
DoublyListNode *front, *rear; // 头节点 front ,尾节点 rear
int queSize = 0; // 双向队列的长度
public:
/* 构造方法 */
LinkedListDeque() : front(nullptr), rear(nullptr) {
}
/* 析构方法 */
~LinkedListDeque() {
// 遍历链表删除节点,释放内存
DoublyListNode *pre, *cur = front;
while (cur != nullptr) {
pre = cur;
cur = cur->next;
delete pre;
}
}
/* 获取双向队列的长度 */
int size() {
return queSize;
}
/* 判断双向队列是否为空 */
bool isEmpty() {
return size() == 0;
}
/* 入队操作 */
void push(int num, bool isFront) {
DoublyListNode *node = new DoublyListNode(num);
// 若链表为空,则令 front 和 rear 都指向 node
if (isEmpty())
front = rear = node;
// 队首入队操作
else if (isFront) {
// 将 node 添加至链表头部
front->prev = node;
node->next = front;
front = node; // 更新头节点
// 队尾入队操作
} else {
// 将 node 添加至链表尾部
rear->next = node;
node->prev = rear;
rear = node; // 更新尾节点
}
queSize++; // 更新队列长度
}
/* 队首入队 */
void pushFirst(int num) {
push(num, true);
}
/* 队尾入队 */
void pushLast(int num) {
push(num, false);
}
/* 出队操作 */
int pop(bool isFront) {
if (isEmpty())
throw out_of_range("队列为空");
int val;
// 队首出队操作
if (isFront) {
val = front->val; // 暂存头节点值
// 删除头节点
DoublyListNode *fNext = front->next;
if (fNext != nullptr) {
fNext->prev = nullptr;
front->next = nullptr;
}
delete front;
front = fNext; // 更新头节点
// 队尾出队操作
} else {
val = rear->val; // 暂存尾节点值
// 删除尾节点
DoublyListNode *rPrev = rear->prev;
if (rPrev != nullptr) {
rPrev->next = nullptr;
rear->prev = nullptr;
}
delete rear;
rear = rPrev; // 更新尾节点
}
queSize--; // 更新队列长度
return val;
}
/* 队首出队 */
int popFirst() {
return pop(true);
}
/* 队尾出队 */
int popLast() {
return pop(false);
}
/* 访问队首元素 */
int peekFirst() {
if (isEmpty())
throw out_of_range("双向队列为空");
return front->val;
}
/* 访问队尾元素 */
int peekLast() {
if (isEmpty())
throw out_of_range("双向队列为空");
return rear->val;
}
/* 返回数组用于打印 */
vector<int> toVector() {
DoublyListNode *node = front;
vector<int> res(size());
for (int i = 0; i < res.size(); i++) {
res[i] = node->val;
node = node->next;
}
return res;
}
};
/* 双向链表节点 */
class ListNode {
int val; // 节点值
ListNode next; // 后继节点引用
ListNode prev; // 前驱节点引用
ListNode(int val) {
this.val = val;
prev = next = null;
}
}
/* 基于双向链表实现的双向队列 */
class LinkedListDeque {
private ListNode front, rear; // 头节点 front ,尾节点 rear
private int queSize = 0; // 双向队列的长度
public LinkedListDeque() {
front = rear = null;
}
/* 获取双向队列的长度 */
public int size() {
return queSize;
}
/* 判断双向队列是否为空 */
public boolean isEmpty() {
return size() == 0;
}
/* 入队操作 */
private void push(int num, boolean isFront) {
ListNode node = new ListNode(num);
// 若链表为空,则令 front 和 rear 都指向 node
if (isEmpty())
front = rear = node;
// 队首入队操作
else if (isFront) {
// 将 node 添加至链表头部
front.prev = node;
node.next = front;
front = node; // 更新头节点
// 队尾入队操作
} else {
// 将 node 添加至链表尾部
rear.next = node;
node.prev = rear;
rear = node; // 更新尾节点
}
queSize++; // 更新队列长度
}
/* 队首入队 */
public void pushFirst(int num) {
push(num, true);
}
/* 队尾入队 */
public void pushLast(int num) {
push(num, false);
}
/* 出队操作 */
private int pop(boolean isFront) {
if (isEmpty())
throw new IndexOutOfBoundsException();
int val;
// 队首出队操作
if (isFront) {
val = front.val; // 暂存头节点值
// 删除头节点
ListNode fNext = front.next;
if (fNext != null) {
fNext.prev = null;
front.next = null;
}
front = fNext; // 更新头节点
// 队尾出队操作
} else {
val = rear.val; // 暂存尾节点值
// 删除尾节点
ListNode rPrev = rear.prev;
if (rPrev != null) {
rPrev.next = null;
rear.prev = null;
}
rear = rPrev; // 更新尾节点
}
queSize--; // 更新队列长度
return val;
}
/* 队首出队 */
public int popFirst() {
return pop(true);
}
/* 队尾出队 */
public int popLast() {
return pop(false);
}
/* 访问队首元素 */
public int peekFirst() {
if (isEmpty())
throw new IndexOutOfBoundsException();
return front.val;
}
/* 访问队尾元素 */
public int peekLast() {
if (isEmpty())
throw new IndexOutOfBoundsException();
return rear.val;
}
/* 返回数组用于打印 */
public int[] toArray() {
ListNode node = front;
int[] res = new int[size()];
for (int i = 0; i < res.length; i++) {
res[i] = node.val;
node = node.next;
}
return res;
}
}
/* 双向链表节点 */
class ListNode(int val) {
public int val = val; // 节点值
public ListNode? next = null; // 后继节点引用
public ListNode? prev = null; // 前驱节点引用
}
/* 基于双向链表实现的双向队列 */
class LinkedListDeque {
ListNode? front, rear; // 头节点 front, 尾节点 rear
int queSize = 0; // 双向队列的长度
public LinkedListDeque() {
front = null;
rear = null;
}
/* 获取双向队列的长度 */
public int Size() {
return queSize;
}
/* 判断双向队列是否为空 */
public bool IsEmpty() {
return Size() == 0;
}
/* 入队操作 */
void Push(int num, bool isFront) {
ListNode node = new(num);
// 若链表为空,则令 front 和 rear 都指向 node
if (IsEmpty()) {
front = node;
rear = node;
}
// 队首入队操作
else if (isFront) {
// 将 node 添加至链表头部
front!.prev = node;
node.next = front;
front = node; // 更新头节点
}
// 队尾入队操作
else {
// 将 node 添加至链表尾部
rear!.next = node;
node.prev = rear;
rear = node; // 更新尾节点
}
queSize++; // 更新队列长度
}
/* 队首入队 */
public void PushFirst(int num) {
Push(num, true);
}
/* 队尾入队 */
public void PushLast(int num) {
Push(num, false);
}
/* 出队操作 */
int? Pop(bool isFront) {
if (IsEmpty())
throw new Exception();
int? val;
// 队首出队操作
if (isFront) {
val = front?.val; // 暂存头节点值
// 删除头节点
ListNode? fNext = front?.next;
if (fNext != null) {
fNext.prev = null;
front!.next = null;
}
front = fNext; // 更新头节点
}
// 队尾出队操作
else {
val = rear?.val; // 暂存尾节点值
// 删除尾节点
ListNode? rPrev = rear?.prev;
if (rPrev != null) {
rPrev.next = null;
rear!.prev = null;
}
rear = rPrev; // 更新尾节点
}
queSize--; // 更新队列长度
return val;
}
/* 队首出队 */
public int? PopFirst() {
return Pop(true);
}
/* 队尾出队 */
public int? PopLast() {
return Pop(false);
}
/* 访问队首元素 */
public int? PeekFirst() {
if (IsEmpty())
throw new Exception();
return front?.val;
}
/* 访问队尾元素 */
public int? PeekLast() {
if (IsEmpty())
throw new Exception();
return rear?.val;
}
/* 返回数组用于打印 */
public int?[] ToArray() {
ListNode? node = front;
int?[] res = new int?[Size()];
for (int i = 0; i < res.Length; i++) {
res[i] = node?.val;
node = node?.next;
}
return res;
}
}
/* 基于双向链表实现的双向队列 */
type linkedListDeque struct {
// 使用内置包 list
data *list.List
}
/* 初始化双端队列 */
func newLinkedListDeque() *linkedListDeque {
return &linkedListDeque{
data: list.New(),
}
}
/* 队首元素入队 */
func (s *linkedListDeque) pushFirst(value any) {
s.data.PushFront(value)
}
/* 队尾元素入队 */
func (s *linkedListDeque) pushLast(value any) {
s.data.PushBack(value)
}
/* 队首元素出队 */
func (s *linkedListDeque) popFirst() any {
if s.isEmpty() {
return nil
}
e := s.data.Front()
s.data.Remove(e)
return e.Value
}
/* 队尾元素出队 */
func (s *linkedListDeque) popLast() any {
if s.isEmpty() {
return nil
}
e := s.data.Back()
s.data.Remove(e)
return e.Value
}
/* 访问队首元素 */
func (s *linkedListDeque) peekFirst() any {
if s.isEmpty() {
return nil
}
e := s.data.Front()
return e.Value
}
/* 访问队尾元素 */
func (s *linkedListDeque) peekLast() any {
if s.isEmpty() {
return nil
}
e := s.data.Back()
return e.Value
}
/* 获取队列的长度 */
func (s *linkedListDeque) size() int {
return s.data.Len()
}
/* 判断队列是否为空 */
func (s *linkedListDeque) isEmpty() bool {
return s.data.Len() == 0
}
/* 获取 List 用于打印 */
func (s *linkedListDeque) toList() *list.List {
return s.data
}
/* 双向链表节点 */
class ListNode {
var val: Int // 节点值
var next: ListNode? // 后继节点引用
weak var prev: ListNode? // 前驱节点引用
init(val: Int) {
self.val = val
}
}
/* 基于双向链表实现的双向队列 */
class LinkedListDeque {
private var front: ListNode? // 头节点 front
private var rear: ListNode? // 尾节点 rear
private var _size: Int // 双向队列的长度
init() {
_size = 0
}
/* 获取双向队列的长度 */
func size() -> Int {
_size
}
/* 判断双向队列是否为空 */
func isEmpty() -> Bool {
size() == 0
}
/* 入队操作 */
private func push(num: Int, isFront: Bool) {
let node = ListNode(val: num)
// 若链表为空,则令 front 和 rear 都指向 node
if isEmpty() {
front = node
rear = node
}
// 队首入队操作
else if isFront {
// 将 node 添加至链表头部
front?.prev = node
node.next = front
front = node // 更新头节点
}
// 队尾入队操作
else {
// 将 node 添加至链表尾部
rear?.next = node
node.prev = rear
rear = node // 更新尾节点
}
_size += 1 // 更新队列长度
}
/* 队首入队 */
func pushFirst(num: Int) {
push(num: num, isFront: true)
}
/* 队尾入队 */
func pushLast(num: Int) {
push(num: num, isFront: false)
}
/* 出队操作 */
private func pop(isFront: Bool) -> Int {
if isEmpty() {
fatalError("双向队列为空")
}
let val: Int
// 队首出队操作
if isFront {
val = front!.val // 暂存头节点值
// 删除头节点
let fNext = front?.next
if fNext != nil {
fNext?.prev = nil
front?.next = nil
}
front = fNext // 更新头节点
}
// 队尾出队操作
else {
val = rear!.val // 暂存尾节点值
// 删除尾节点
let rPrev = rear?.prev
if rPrev != nil {
rPrev?.next = nil
rear?.prev = nil
}
rear = rPrev // 更新尾节点
}
_size -= 1 // 更新队列长度
return val
}
/* 队首出队 */
func popFirst() -> Int {
pop(isFront: true)
}
/* 队尾出队 */
func popLast() -> Int {
pop(isFront: false)
}
/* 访问队首元素 */
func peekFirst() -> Int {
if isEmpty() {
fatalError("双向队列为空")
}
return front!.val
}
/* 访问队尾元素 */
func peekLast() -> Int {
if isEmpty() {
fatalError("双向队列为空")
}
return rear!.val
}
/* 返回数组用于打印 */
func toArray() -> [Int] {
var node = front
var res = Array(repeating: 0, count: size())
for i in res.indices {
res[i] = node!.val
node = node?.next
}
return res
}
}
/* 双向链表节点 */
class ListNode {
prev; // 前驱节点引用 (指针)
next; // 后继节点引用 (指针)
val; // 节点值
constructor(val) {
this.val = val;
this.next = null;
this.prev = null;
}
}
/* 基于双向链表实现的双向队列 */
class LinkedListDeque {
#front; // 头节点 front
#rear; // 尾节点 rear
#queSize; // 双向队列的长度
constructor() {
this.#front = null;
this.#rear = null;
this.#queSize = 0;
}
/* 队尾入队操作 */
pushLast(val) {
const node = new ListNode(val);
// 若链表为空,则令 front 和 rear 都指向 node
if (this.#queSize === 0) {
this.#front = node;
this.#rear = node;
} else {
// 将 node 添加至链表尾部
this.#rear.next = node;
node.prev = this.#rear;
this.#rear = node; // 更新尾节点
}
this.#queSize++;
}
/* 队首入队操作 */
pushFirst(val) {
const node = new ListNode(val);
// 若链表为空,则令 front 和 rear 都指向 node
if (this.#queSize === 0) {
this.#front = node;
this.#rear = node;
} else {
// 将 node 添加至链表头部
this.#front.prev = node;
node.next = this.#front;
this.#front = node; // 更新头节点
}
this.#queSize++;
}
/* 队尾出队操作 */
popLast() {
if (this.#queSize === 0) {
return null;
}
const value = this.#rear.val; // 存储尾节点值
// 删除尾节点
let temp = this.#rear.prev;
if (temp !== null) {
temp.next = null;
this.#rear.prev = null;
}
this.#rear = temp; // 更新尾节点
this.#queSize--;
return value;
}
/* 队首出队操作 */
popFirst() {
if (this.#queSize === 0) {
return null;
}
const value = this.#front.val; // 存储尾节点值
// 删除头节点
let temp = this.#front.next;
if (temp !== null) {
temp.prev = null;
this.#front.next = null;
}
this.#front = temp; // 更新头节点
this.#queSize--;
return value;
}
/* 访问队尾元素 */
peekLast() {
return this.#queSize === 0 ? null : this.#rear.val;
}
/* 访问队首元素 */
peekFirst() {
return this.#queSize === 0 ? null : this.#front.val;
}
/* 获取双向队列的长度 */
size() {
return this.#queSize;
}
/* 判断双向队列是否为空 */
isEmpty() {
return this.#queSize === 0;
}
/* 打印双向队列 */
print() {
const arr = [];
let temp = this.#front;
while (temp !== null) {
arr.push(temp.val);
temp = temp.next;
}
console.log('[' + arr.join(', ') + ']');
}
}
/* 双向链表节点 */
class ListNode {
prev: ListNode; // 前驱节点引用 (指针)
next: ListNode; // 后继节点引用 (指针)
val: number; // 节点值
constructor(val: number) {
this.val = val;
this.next = null;
this.prev = null;
}
}
/* 基于双向链表实现的双向队列 */
class LinkedListDeque {
private front: ListNode; // 头节点 front
private rear: ListNode; // 尾节点 rear
private queSize: number; // 双向队列的长度
constructor() {
this.front = null;
this.rear = null;
this.queSize = 0;
}
/* 队尾入队操作 */
pushLast(val: number): void {
const node: ListNode = new ListNode(val);
// 若链表为空,则令 front 和 rear 都指向 node
if (this.queSize === 0) {
this.front = node;
this.rear = node;
} else {
// 将 node 添加至链表尾部
this.rear.next = node;
node.prev = this.rear;
this.rear = node; // 更新尾节点
}
this.queSize++;
}
/* 队首入队操作 */
pushFirst(val: number): void {
const node: ListNode = new ListNode(val);
// 若链表为空,则令 front 和 rear 都指向 node
if (this.queSize === 0) {
this.front = node;
this.rear = node;
} else {
// 将 node 添加至链表头部
this.front.prev = node;
node.next = this.front;
this.front = node; // 更新头节点
}
this.queSize++;
}
/* 队尾出队操作 */
popLast(): number {
if (this.queSize === 0) {
return null;
}
const value: number = this.rear.val; // 存储尾节点值
// 删除尾节点
let temp: ListNode = this.rear.prev;
if (temp !== null) {
temp.next = null;
this.rear.prev = null;
}
this.rear = temp; // 更新尾节点
this.queSize--;
return value;
}
/* 队首出队操作 */
popFirst(): number {
if (this.queSize === 0) {
return null;
}
const value: number = this.front.val; // 存储尾节点值
// 删除头节点
let temp: ListNode = this.front.next;
if (temp !== null) {
temp.prev = null;
this.front.next = null;
}
this.front = temp; // 更新头节点
this.queSize--;
return value;
}
/* 访问队尾元素 */
peekLast(): number {
return this.queSize === 0 ? null : this.rear.val;
}
/* 访问队首元素 */
peekFirst(): number {
return this.queSize === 0 ? null : this.front.val;
}
/* 获取双向队列的长度 */
size(): number {
return this.queSize;
}
/* 判断双向队列是否为空 */
isEmpty(): boolean {
return this.queSize === 0;
}
/* 打印双向队列 */
print(): void {
const arr: number[] = [];
let temp: ListNode = this.front;
while (temp !== null) {
arr.push(temp.val);
temp = temp.next;
}
console.log('[' + arr.join(', ') + ']');
}
}
/* 双向链表节点 */
class ListNode {
int val; // 节点值
ListNode? next; // 后继节点引用
ListNode? prev; // 前驱节点引用
ListNode(this.val, {this.next, this.prev});
}
/* 基于双向链表实现的双向对列 */
class LinkedListDeque {
late ListNode? _front; // 头节点 _front
late ListNode? _rear; // 尾节点 _rear
int _queSize = 0; // 双向队列的长度
LinkedListDeque() {
this._front = null;
this._rear = null;
}
/* 获取双向队列长度 */
int size() {
return this._queSize;
}
/* 判断双向队列是否为空 */
bool isEmpty() {
return size() == 0;
}
/* 入队操作 */
void push(int _num, bool isFront) {
final ListNode node = ListNode(_num);
if (isEmpty()) {
// 若链表为空,则令 _front 和 _rear 都指向 node
_front = _rear = node;
} else if (isFront) {
// 队首入队操作
// 将 node 添加至链表头部
_front!.prev = node;
node.next = _front;
_front = node; // 更新头节点
} else {
// 队尾入队操作
// 将 node 添加至链表尾部
_rear!.next = node;
node.prev = _rear;
_rear = node; // 更新尾节点
}
_queSize++; // 更新队列长度
}
/* 队首入队 */
void pushFirst(int _num) {
push(_num, true);
}
/* 队尾入队 */
void pushLast(int _num) {
push(_num, false);
}
/* 出队操作 */
int? pop(bool isFront) {
// 若队列为空,直接返回 null
if (isEmpty()) {
return null;
}
final int val;
if (isFront) {
// 队首出队操作
val = _front!.val; // 暂存头节点值
// 删除头节点
ListNode? fNext = _front!.next;
if (fNext != null) {
fNext.prev = null;
_front!.next = null;
}
_front = fNext; // 更新头节点
} else {
// 队尾出队操作
val = _rear!.val; // 暂存尾节点值
// 删除尾节点
ListNode? rPrev = _rear!.prev;
if (rPrev != null) {
rPrev.next = null;
_rear!.prev = null;
}
_rear = rPrev; // 更新尾节点
}
_queSize--; // 更新队列长度
return val;
}
/* 队首出队 */
int? popFirst() {
return pop(true);
}
/* 队尾出队 */
int? popLast() {
return pop(false);
}
/* 访问队首元素 */
int? peekFirst() {
return _front?.val;
}
/* 访问队尾元素 */
int? peekLast() {
return _rear?.val;
}
/* 返回数组用于打印 */
List<int> toArray() {
ListNode? node = _front;
final List<int> res = [];
for (int i = 0; i < _queSize; i++) {
res.add(node!.val);
node = node.next;
}
return res;
}
}
/* 双向链表节点 */
pub struct ListNode<T> {
pub val: T, // 节点值
pub next: Option<Rc<RefCell<ListNode<T>>>>, // 后继节点指针
pub prev: Option<Rc<RefCell<ListNode<T>>>>, // 前驱节点指针
}
impl<T> ListNode<T> {
pub fn new(val: T) -> Rc<RefCell<ListNode<T>>> {
Rc::new(RefCell::new(ListNode {
val,
next: None,
prev: None,
}))
}
}
/* 基于双向链表实现的双向队列 */
#[allow(dead_code)]
pub struct LinkedListDeque<T> {
front: Option<Rc<RefCell<ListNode<T>>>>, // 头节点 front
rear: Option<Rc<RefCell<ListNode<T>>>>, // 尾节点 rear
que_size: usize, // 双向队列的长度
}
impl<T: Copy> LinkedListDeque<T> {
pub fn new() -> Self {
Self {
front: None,
rear: None,
que_size: 0,
}
}
/* 获取双向队列的长度 */
pub fn size(&self) -> usize {
return self.que_size;
}
/* 判断双向队列是否为空 */
pub fn is_empty(&self) -> bool {
return self.size() == 0;
}
/* 入队操作 */
pub fn push(&mut self, num: T, is_front: bool) {
let node = ListNode::new(num);
// 队首入队操作
if is_front {
match self.front.take() {
// 若链表为空,则令 front 和 rear 都指向 node
None => {
self.rear = Some(node.clone());
self.front = Some(node);
}
// 将 node 添加至链表头部
Some(old_front) => {
old_front.borrow_mut().prev = Some(node.clone());
node.borrow_mut().next = Some(old_front);
self.front = Some(node); // 更新头节点
}
}
}
// 队尾入队操作
else {
match self.rear.take() {
// 若链表为空,则令 front 和 rear 都指向 node
None => {
self.front = Some(node.clone());
self.rear = Some(node);
}
// 将 node 添加至链表尾部
Some(old_rear) => {
old_rear.borrow_mut().next = Some(node.clone());
node.borrow_mut().prev = Some(old_rear);
self.rear = Some(node); // 更新尾节点
}
}
}
self.que_size += 1; // 更新队列长度
}
/* 队首入队 */
pub fn push_first(&mut self, num: T) {
self.push(num, true);
}
/* 队尾入队 */
pub fn push_last(&mut self, num: T) {
self.push(num, false);
}
/* 出队操作 */
pub fn pop(&mut self, is_front: bool) -> Option<T> {
// 若队列为空,直接返回 None
if self.is_empty() {
return None;
};
// 队首出队操作
if is_front {
self.front.take().map(|old_front| {
match old_front.borrow_mut().next.take() {
Some(new_front) => {
new_front.borrow_mut().prev.take();
self.front = Some(new_front); // 更新头节点
}
None => {
self.rear.take();
}
}
self.que_size -= 1; // 更新队列长度
Rc::try_unwrap(old_front).ok().unwrap().into_inner().val
})
}
// 队尾出队操作
else {
self.rear.take().map(|old_rear| {
match old_rear.borrow_mut().prev.take() {
Some(new_rear) => {
new_rear.borrow_mut().next.take();
self.rear = Some(new_rear); // 更新尾节点
}
None => {
self.front.take();
}
}
self.que_size -= 1; // 更新队列长度
Rc::try_unwrap(old_rear).ok().unwrap().into_inner().val
})
}
}
/* 队首出队 */
pub fn pop_first(&mut self) -> Option<T> {
return self.pop(true);
}
/* 队尾出队 */
pub fn pop_last(&mut self) -> Option<T> {
return self.pop(false);
}
/* 访问队首元素 */
pub fn peek_first(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {
self.front.as_ref()
}
/* 访问队尾元素 */
pub fn peek_last(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {
self.rear.as_ref()
}
/* 返回数组用于打印 */
pub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {
if let Some(node) = head {
let mut nums = self.to_array(node.borrow().next.as_ref());
nums.insert(0, node.borrow().val);
return nums;
}
return Vec::new();
}
}
/* 双向链表节点 */
typedef struct DoublyListNode {
int val; // 节点值
struct DoublyListNode *next; // 后继节点
struct DoublyListNode *prev; // 前驱节点
} DoublyListNode;
/* 构造函数 */
DoublyListNode *newDoublyListNode(int num) {
DoublyListNode *new = (DoublyListNode *)malloc(sizeof(DoublyListNode));
new->val = num;
new->next = NULL;
new->prev = NULL;
return new;
}
/* 析构函数 */
void delDoublyListNode(DoublyListNode *node) {
free(node);
}
/* 基于双向链表实现的双向队列 */
typedef struct {
DoublyListNode *front, *rear; // 头节点 front ,尾节点 rear
int queSize; // 双向队列的长度
} LinkedListDeque;
/* 构造函数 */
LinkedListDeque *newLinkedListDeque() {
LinkedListDeque *deque = (LinkedListDeque *)malloc(sizeof(LinkedListDeque));
deque->front = NULL;
deque->rear = NULL;
deque->queSize = 0;
return deque;
}
/* 析构函数 */
void delLinkedListdeque(LinkedListDeque *deque) {
// 释放所有节点
for (int i = 0; i < deque->queSize && deque->front != NULL; i++) {
DoublyListNode *tmp = deque->front;
deque->front = deque->front->next;
free(tmp);
}
// 释放 deque 结构体
free(deque);
}
/* 获取队列的长度 */
int size(LinkedListDeque *deque) {
return deque->queSize;
}
/* 判断队列是否为空 */
bool empty(LinkedListDeque *deque) {
return (size(deque) == 0);
}
/* 入队 */
void push(LinkedListDeque *deque, int num, bool isFront) {
DoublyListNode *node = newDoublyListNode(num);
// 若链表为空,则令 front 和 rear 都指向node
if (empty(deque)) {
deque->front = deque->rear = node;
}
// 队首入队操作
else if (isFront) {
// 将 node 添加至链表头部
deque->front->prev = node;
node->next = deque->front;
deque->front = node; // 更新头节点
}
// 队尾入队操作
else {
// 将 node 添加至链表尾部
deque->rear->next = node;
node->prev = deque->rear;
deque->rear = node;
}
deque->queSize++; // 更新队列长度
}
/* 队首入队 */
void pushFirst(LinkedListDeque *deque, int num) {
push(deque, num, true);
}
/* 队尾入队 */
void pushLast(LinkedListDeque *deque, int num) {
push(deque, num, false);
}
/* 访问队首元素 */
int peekFirst(LinkedListDeque *deque) {
assert(size(deque) && deque->front);
return deque->front->val;
}
/* 访问队尾元素 */
int peekLast(LinkedListDeque *deque) {
assert(size(deque) && deque->rear);
return deque->rear->val;
}
/* 出队 */
int pop(LinkedListDeque *deque, bool isFront) {
if (empty(deque))
return -1;
int val;
// 队首出队操作
if (isFront) {
val = peekFirst(deque); // 暂存头节点值
DoublyListNode *fNext = deque->front->next;
if (fNext) {
fNext->prev = NULL;
deque->front->next = NULL;
}
delDoublyListNode(deque->front);
deque->front = fNext; // 更新头节点
}
// 队尾出队操作
else {
val = peekLast(deque); // 暂存尾节点值
DoublyListNode *rPrev = deque->rear->prev;
if (rPrev) {
rPrev->next = NULL;
deque->rear->prev = NULL;
}
delDoublyListNode(deque->rear);
deque->rear = rPrev; // 更新尾节点
}
deque->queSize--; // 更新队列长度
return val;
}
/* 队首出队 */
int popFirst(LinkedListDeque *deque) {
return pop(deque, true);
}
/* 队尾出队 */
int popLast(LinkedListDeque *deque) {
return pop(deque, false);
}
/* 打印队列 */
void printLinkedListDeque(LinkedListDeque *deque) {
int *arr = malloc(sizeof(int) * deque->queSize);
// 拷贝链表中的数据到数组
int i;
DoublyListNode *node;
for (i = 0, node = deque->front; i < deque->queSize; i++) {
arr[i] = node->val;
node = node->next;
}
printArray(arr, deque->queSize);
free(arr);
}
/* 双向链表节点 */
class ListNode(var _val: Int) {
// 节点值
var next: ListNode? = null // 后继节点引用
var prev: ListNode? = null // 前驱节点引用
}
/* 基于双向链表实现的双向队列 */
class LinkedListDeque {
private var front: ListNode? = null // 头节点 front
private var rear: ListNode? = null // 尾节点 rear
private var queSize: Int = 0 // 双向队列的长度
/* 获取双向队列的长度 */
fun size(): Int {
return queSize
}
/* 判断双向队列是否为空 */
fun isEmpty(): Boolean {
return size() == 0
}
/* 入队操作 */
fun push(num: Int, isFront: Boolean) {
val node = ListNode(num)
// 若链表为空,则令 front 和 rear 都指向 node
if (isEmpty()) {
rear = node
front = rear
// 队首入队操作
} else if (isFront) {
// 将 node 添加至链表头部
front?.prev = node
node.next = front
front = node // 更新头节点
// 队尾入队操作
} else {
// 将 node 添加至链表尾部
rear?.next = node
node.prev = rear
rear = node // 更新尾节点
}
queSize++ // 更新队列长度
}
/* 队首入队 */
fun pushFirst(num: Int) {
push(num, true)
}
/* 队尾入队 */
fun pushLast(num: Int) {
push(num, false)
}
/* 出队操作 */
fun pop(isFront: Boolean): Int {
if (isEmpty())
throw IndexOutOfBoundsException()
val _val: Int
// 队首出队操作
if (isFront) {
_val = front!!._val // 暂存头节点值
// 删除头节点
val fNext = front!!.next
if (fNext != null) {
fNext.prev = null
front!!.next = null
}
front = fNext // 更新头节点
// 队尾出队操作
} else {
_val = rear!!._val // 暂存尾节点值
// 删除尾节点
val rPrev = rear!!.prev
if (rPrev != null) {
rPrev.next = null
rear!!.prev = null
}
rear = rPrev // 更新尾节点
}
queSize-- // 更新队列长度
return _val
}
/* 队首出队 */
fun popFirst(): Int {
return pop(true)
}
/* 队尾出队 */
fun popLast(): Int {
return pop(false)
}
/* 访问队首元素 */
fun peekFirst(): Int {
if (isEmpty()) throw IndexOutOfBoundsException()
return front!!._val
}
/* 访问队尾元素 */
fun peekLast(): Int {
if (isEmpty()) throw IndexOutOfBoundsException()
return rear!!._val
}
/* 返回数组用于打印 */
fun toArray(): IntArray {
var node = front
val res = IntArray(size())
for (i in res.indices) {
res[i] = node!!._val
node = node.next
}
return res
}
}
=begin
File: linkedlist_deque.rb
Created Time: 2024-04-06
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
=end
### 双向链表节点
class ListNode
attr_accessor :val
attr_accessor :next # 后继节点引用
attr_accessor :prev # 前躯节点引用
### 构造方法 ###
def initialize(val)
@val = val
end
end
### 基于双向链表实现的双向队列 ###
class LinkedListDeque
### 获取双向队列的长度 ###
attr_reader :size
### 构造方法 ###
def initialize
@front = nil # 头节点 front
@rear = nil # 尾节点 rear
@size = 0 # 双向队列的长度
end
### 判断双向队列是否为空 ###
def is_empty?
size.zero?
end
### 入队操作 ###
def push(num, is_front)
node = ListNode.new(num)
# 若链表为空, 则令 front 和 rear 都指向 node
if is_empty?
@front = @rear = node
# 队首入队操作
elsif is_front
# 将 node 添加至链表头部
@front.prev = node
node.next = @front
@front = node # 更新头节点
# 队尾入队操作
else
# 将 node 添加至链表尾部
@rear.next = node
node.prev = @rear
@rear = node # 更新尾节点
end
@size += 1 # 更新队列长度
end
### 队首入队 ###
def push_first(num)
push(num, true)
end
### 队尾入队 ###
def push_last(num)
push(num, false)
end
### 出队操作 ###
def pop(is_front)
raise IndexError, '双向队列为空' if is_empty?
# 队首出队操作
if is_front
val = @front.val # 暂存头节点值
# 删除头节点
fnext = @front.next
unless fnext.nil?
fnext.prev = nil
@front.next = nil
end
@front = fnext # 更新头节点
# 队尾出队操作
else
val = @rear.val # 暂存尾节点值
# 删除尾节点
rprev = @rear.prev
unless rprev.nil?
rprev.next = nil
@rear.prev = nil
end
@rear = rprev # 更新尾节点
end
@size -= 1 # 更新队列长度
val
end
### 队首出队 ###
def pop_first
pop(true)
end
### 队首出队 ###
def pop_last
pop(false)
end
### 访问队首元素 ###
def peek_first
raise IndexError, '双向队列为空' if is_empty?
@front.val
end
### 访问队尾元素 ###
def peek_last
raise IndexError, '双向队列为空' if is_empty?
@rear.val
end
### 返回数组用于打印 ###
def to_array
node = @front
res = Array.new(size, 0)
for i in 0...size
res[i] = node.val
node = node.next
end
res
end
end
// 双向链表节点
fn ListNode(comptime T: type) type {
return struct {
const Self = @This();
val: T = undefined, // 节点值
next: ?*Self = null, // 后继节点指针
prev: ?*Self = null, // 前驱节点指针
// Initialize a list node with specific value
pub fn init(self: *Self, x: i32) void {
self.val = x;
self.next = null;
self.prev = null;
}
};
}
// 基于双向链表实现的双向队列
fn LinkedListDeque(comptime T: type) type {
return struct {
const Self = @This();
front: ?*ListNode(T) = null, // 头节点 front
rear: ?*ListNode(T) = null, // 尾节点 rear
que_size: usize = 0, // 双向队列的长度
mem_arena: ?std.heap.ArenaAllocator = null,
mem_allocator: std.mem.Allocator = undefined, // 内存分配器
// 构造函数(分配内存+初始化队列)
pub fn init(self: *Self, allocator: std.mem.Allocator) !void {
if (self.mem_arena == null) {
self.mem_arena = std.heap.ArenaAllocator.init(allocator);
self.mem_allocator = self.mem_arena.?.allocator();
}
self.front = null;
self.rear = null;
self.que_size = 0;
}
// 析构函数(释放内存)
pub fn deinit(self: *Self) void {
if (self.mem_arena == null) return;
self.mem_arena.?.deinit();
}
// 获取双向队列的长度
pub fn size(self: *Self) usize {
return self.que_size;
}
// 判断双向队列是否为空
pub fn isEmpty(self: *Self) bool {
return self.size() == 0;
}
// 入队操作
pub fn push(self: *Self, num: T, is_front: bool) !void {
var node = try self.mem_allocator.create(ListNode(T));
node.init(num);
// 若链表为空,则令 front 和 rear 都指向 node
if (self.isEmpty()) {
self.front = node;
self.rear = node;
// 队首入队操作
} else if (is_front) {
// 将 node 添加至链表头部
self.front.?.prev = node;
node.next = self.front;
self.front = node; // 更新头节点
// 队尾入队操作
} else {
// 将 node 添加至链表尾部
self.rear.?.next = node;
node.prev = self.rear;
self.rear = node; // 更新尾节点
}
self.que_size += 1; // 更新队列长度
}
// 队首入队
pub fn pushFirst(self: *Self, num: T) !void {
try self.push(num, true);
}
// 队尾入队
pub fn pushLast(self: *Self, num: T) !void {
try self.push(num, false);
}
// 出队操作
pub fn pop(self: *Self, is_front: bool) T {
if (self.isEmpty()) @panic("双向队列为空");
var val: T = undefined;
// 队首出队操作
if (is_front) {
val = self.front.?.val; // 暂存头节点值
// 删除头节点
var fNext = self.front.?.next;
if (fNext != null) {
fNext.?.prev = null;
self.front.?.next = null;
}
self.front = fNext; // 更新头节点
// 队尾出队操作
} else {
val = self.rear.?.val; // 暂存尾节点值
// 删除尾节点
var rPrev = self.rear.?.prev;
if (rPrev != null) {
rPrev.?.next = null;
self.rear.?.prev = null;
}
self.rear = rPrev; // 更新尾节点
}
self.que_size -= 1; // 更新队列长度
return val;
}
// 队首出队
pub fn popFirst(self: *Self) T {
return self.pop(true);
}
// 队尾出队
pub fn popLast(self: *Self) T {
return self.pop(false);
}
// 访问队首元素
pub fn peekFirst(self: *Self) T {
if (self.isEmpty()) @panic("双向队列为空");
return self.front.?.val;
}
// 访问队尾元素
pub fn peekLast(self: *Self) T {
if (self.isEmpty()) @panic("双向队列为空");
return self.rear.?.val;
}
// 返回数组用于打印
pub fn toArray(self: *Self) ![]T {
var node = self.front;
var res = try self.mem_allocator.alloc(T, self.size());
@memset(res, @as(T, 0));
var i: usize = 0;
while (i < res.len) : (i += 1) {
res[i] = node.?.val;
node = node.?.next;
}
return res;
}
};
}
2. 基于数组的实现¶
如图 5-9 所示,与基于数组实现队列类似,我们也可以使用环形数组来实现双向队列。
图 5-9 基于数组实现双向队列的入队出队操作
在队列的实现基础上,仅需增加“队首入队”和“队尾出队”的方法:
class ArrayDeque:
"""基于环形数组实现的双向队列"""
def __init__(self, capacity: int):
"""构造方法"""
self._nums: list[int] = [0] * capacity
self._front: int = 0
self._size: int = 0
def capacity(self) -> int:
"""获取双向队列的容量"""
return len(self._nums)
def size(self) -> int:
"""获取双向队列的长度"""
return self._size
def is_empty(self) -> bool:
"""判断双向队列是否为空"""
return self._size == 0
def index(self, i: int) -> int:
"""计算环形数组索引"""
# 通过取余操作实现数组首尾相连
# 当 i 越过数组尾部后,回到头部
# 当 i 越过数组头部后,回到尾部
return (i + self.capacity()) % self.capacity()
def push_first(self, num: int):
"""队首入队"""
if self._size == self.capacity():
print("双向队列已满")
return
# 队首指针向左移动一位
# 通过取余操作实现 front 越过数组头部后回到尾部
self._front = self.index(self._front - 1)
# 将 num 添加至队首
self._nums[self._front] = num
self._size += 1
def push_last(self, num: int):
"""队尾入队"""
if self._size == self.capacity():
print("双向队列已满")
return
# 计算队尾指针,指向队尾索引 + 1
rear = self.index(self._front + self._size)
# 将 num 添加至队尾
self._nums[rear] = num
self._size += 1
def pop_first(self) -> int:
"""队首出队"""
num = self.peek_first()
# 队首指针向后移动一位
self._front = self.index(self._front + 1)
self._size -= 1
return num
def pop_last(self) -> int:
"""队尾出队"""
num = self.peek_last()
self._size -= 1
return num
def peek_first(self) -> int:
"""访问队首元素"""
if self.is_empty():
raise IndexError("双向队列为空")
return self._nums[self._front]
def peek_last(self) -> int:
"""访问队尾元素"""
if self.is_empty():
raise IndexError("双向队列为空")
# 计算尾元素索引
last = self.index(self._front + self._size - 1)
return self._nums[last]
def to_array(self) -> list[int]:
"""返回数组用于打印"""
# 仅转换有效长度范围内的列表元素
res = []
for i in range(self._size):
res.append(self._nums[self.index(self._front + i)])
return res
/* 基于环形数组实现的双向队列 */
class ArrayDeque {
private:
vector<int> nums; // 用于存储双向队列元素的数组
int front; // 队首指针,指向队首元素
int queSize; // 双向队列长度
public:
/* 构造方法 */
ArrayDeque(int capacity) {
nums.resize(capacity);
front = queSize = 0;
}
/* 获取双向队列的容量 */
int capacity() {
return nums.size();
}
/* 获取双向队列的长度 */
int size() {
return queSize;
}
/* 判断双向队列是否为空 */
bool isEmpty() {
return queSize == 0;
}
/* 计算环形数组索引 */
int index(int i) {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部后,回到头部
// 当 i 越过数组头部后,回到尾部
return (i + capacity()) % capacity();
}
/* 队首入队 */
void pushFirst(int num) {
if (queSize == capacity()) {
cout << "双向队列已满" << endl;
return;
}
// 队首指针向左移动一位
// 通过取余操作实现 front 越过数组头部后回到尾部
front = index(front - 1);
// 将 num 添加至队首
nums[front] = num;
queSize++;
}
/* 队尾入队 */
void pushLast(int num) {
if (queSize == capacity()) {
cout << "双向队列已满" << endl;
return;
}
// 计算队尾指针,指向队尾索引 + 1
int rear = index(front + queSize);
// 将 num 添加至队尾
nums[rear] = num;
queSize++;
}
/* 队首出队 */
int popFirst() {
int num = peekFirst();
// 队首指针向后移动一位
front = index(front + 1);
queSize--;
return num;
}
/* 队尾出队 */
int popLast() {
int num = peekLast();
queSize--;
return num;
}
/* 访问队首元素 */
int peekFirst() {
if (isEmpty())
throw out_of_range("双向队列为空");
return nums[front];
}
/* 访问队尾元素 */
int peekLast() {
if (isEmpty())
throw out_of_range("双向队列为空");
// 计算尾元素索引
int last = index(front + queSize - 1);
return nums[last];
}
/* 返回数组用于打印 */
vector<int> toVector() {
// 仅转换有效长度范围内的列表元素
vector<int> res(queSize);
for (int i = 0, j = front; i < queSize; i++, j++) {
res[i] = nums[index(j)];
}
return res;
}
};
/* 基于环形数组实现的双向队列 */
class ArrayDeque {
private int[] nums; // 用于存储双向队列元素的数组
private int front; // 队首指针,指向队首元素
private int queSize; // 双向队列长度
/* 构造方法 */
public ArrayDeque(int capacity) {
this.nums = new int[capacity];
front = queSize = 0;
}
/* 获取双向队列的容量 */
public int capacity() {
return nums.length;
}
/* 获取双向队列的长度 */
public int size() {
return queSize;
}
/* 判断双向队列是否为空 */
public boolean isEmpty() {
return queSize == 0;
}
/* 计算环形数组索引 */
private int index(int i) {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部后,回到头部
// 当 i 越过数组头部后,回到尾部
return (i + capacity()) % capacity();
}
/* 队首入队 */
public void pushFirst(int num) {
if (queSize == capacity()) {
System.out.println("双向队列已满");
return;
}
// 队首指针向左移动一位
// 通过取余操作实现 front 越过数组头部后回到尾部
front = index(front - 1);
// 将 num 添加至队首
nums[front] = num;
queSize++;
}
/* 队尾入队 */
public void pushLast(int num) {
if (queSize == capacity()) {
System.out.println("双向队列已满");
return;
}
// 计算队尾指针,指向队尾索引 + 1
int rear = index(front + queSize);
// 将 num 添加至队尾
nums[rear] = num;
queSize++;
}
/* 队首出队 */
public int popFirst() {
int num = peekFirst();
// 队首指针向后移动一位
front = index(front + 1);
queSize--;
return num;
}
/* 队尾出队 */
public int popLast() {
int num = peekLast();
queSize--;
return num;
}
/* 访问队首元素 */
public int peekFirst() {
if (isEmpty())
throw new IndexOutOfBoundsException();
return nums[front];
}
/* 访问队尾元素 */
public int peekLast() {
if (isEmpty())
throw new IndexOutOfBoundsException();
// 计算尾元素索引
int last = index(front + queSize - 1);
return nums[last];
}
/* 返回数组用于打印 */
public int[] toArray() {
// 仅转换有效长度范围内的列表元素
int[] res = new int[queSize];
for (int i = 0, j = front; i < queSize; i++, j++) {
res[i] = nums[index(j)];
}
return res;
}
}
/* 基于环形数组实现的双向队列 */
class ArrayDeque {
int[] nums; // 用于存储双向队列元素的数组
int front; // 队首指针,指向队首元素
int queSize; // 双向队列长度
/* 构造方法 */
public ArrayDeque(int capacity) {
nums = new int[capacity];
front = queSize = 0;
}
/* 获取双向队列的容量 */
int Capacity() {
return nums.Length;
}
/* 获取双向队列的长度 */
public int Size() {
return queSize;
}
/* 判断双向队列是否为空 */
public bool IsEmpty() {
return queSize == 0;
}
/* 计算环形数组索引 */
int Index(int i) {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部后,回到头部
// 当 i 越过数组头部后,回到尾部
return (i + Capacity()) % Capacity();
}
/* 队首入队 */
public void PushFirst(int num) {
if (queSize == Capacity()) {
Console.WriteLine("双向队列已满");
return;
}
// 队首指针向左移动一位
// 通过取余操作实现 front 越过数组头部后回到尾部
front = Index(front - 1);
// 将 num 添加至队首
nums[front] = num;
queSize++;
}
/* 队尾入队 */
public void PushLast(int num) {
if (queSize == Capacity()) {
Console.WriteLine("双向队列已满");
return;
}
// 计算队尾指针,指向队尾索引 + 1
int rear = Index(front + queSize);
// 将 num 添加至队尾
nums[rear] = num;
queSize++;
}
/* 队首出队 */
public int PopFirst() {
int num = PeekFirst();
// 队首指针向后移动一位
front = Index(front + 1);
queSize--;
return num;
}
/* 队尾出队 */
public int PopLast() {
int num = PeekLast();
queSize--;
return num;
}
/* 访问队首元素 */
public int PeekFirst() {
if (IsEmpty()) {
throw new InvalidOperationException();
}
return nums[front];
}
/* 访问队尾元素 */
public int PeekLast() {
if (IsEmpty()) {
throw new InvalidOperationException();
}
// 计算尾元素索引
int last = Index(front + queSize - 1);
return nums[last];
}
/* 返回数组用于打印 */
public int[] ToArray() {
// 仅转换有效长度范围内的列表元素
int[] res = new int[queSize];
for (int i = 0, j = front; i < queSize; i++, j++) {
res[i] = nums[Index(j)];
}
return res;
}
}
/* 基于环形数组实现的双向队列 */
type arrayDeque struct {
nums []int // 用于存储双向队列元素的数组
front int // 队首指针,指向队首元素
queSize int // 双向队列长度
queCapacity int // 队列容量(即最大容纳元素数量)
}
/* 初始化队列 */
func newArrayDeque(queCapacity int) *arrayDeque {
return &arrayDeque{
nums: make([]int, queCapacity),
queCapacity: queCapacity,
front: 0,
queSize: 0,
}
}
/* 获取双向队列的长度 */
func (q *arrayDeque) size() int {
return q.queSize
}
/* 判断双向队列是否为空 */
func (q *arrayDeque) isEmpty() bool {
return q.queSize == 0
}
/* 计算环形数组索引 */
func (q *arrayDeque) index(i int) int {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部后,回到头部
// 当 i 越过数组头部后,回到尾部
return (i + q.queCapacity) % q.queCapacity
}
/* 队首入队 */
func (q *arrayDeque) pushFirst(num int) {
if q.queSize == q.queCapacity {
fmt.Println("双向队列已满")
return
}
// 队首指针向左移动一位
// 通过取余操作实现 front 越过数组头部后回到尾部
q.front = q.index(q.front - 1)
// 将 num 添加至队首
q.nums[q.front] = num
q.queSize++
}
/* 队尾入队 */
func (q *arrayDeque) pushLast(num int) {
if q.queSize == q.queCapacity {
fmt.Println("双向队列已满")
return
}
// 计算队尾指针,指向队尾索引 + 1
rear := q.index(q.front + q.queSize)
// 将 num 添加至队尾
q.nums[rear] = num
q.queSize++
}
/* 队首出队 */
func (q *arrayDeque) popFirst() any {
num := q.peekFirst()
if num == nil {
return nil
}
// 队首指针向后移动一位
q.front = q.index(q.front + 1)
q.queSize--
return num
}
/* 队尾出队 */
func (q *arrayDeque) popLast() any {
num := q.peekLast()
if num == nil {
return nil
}
q.queSize--
return num
}
/* 访问队首元素 */
func (q *arrayDeque) peekFirst() any {
if q.isEmpty() {
return nil
}
return q.nums[q.front]
}
/* 访问队尾元素 */
func (q *arrayDeque) peekLast() any {
if q.isEmpty() {
return nil
}
// 计算尾元素索引
last := q.index(q.front + q.queSize - 1)
return q.nums[last]
}
/* 获取 Slice 用于打印 */
func (q *arrayDeque) toSlice() []int {
// 仅转换有效长度范围内的列表元素
res := make([]int, q.queSize)
for i, j := 0, q.front; i < q.queSize; i++ {
res[i] = q.nums[q.index(j)]
j++
}
return res
}
/* 基于环形数组实现的双向队列 */
class ArrayDeque {
private var nums: [Int] // 用于存储双向队列元素的数组
private var front: Int // 队首指针,指向队首元素
private var _size: Int // 双向队列长度
/* 构造方法 */
init(capacity: Int) {
nums = Array(repeating: 0, count: capacity)
front = 0
_size = 0
}
/* 获取双向队列的容量 */
func capacity() -> Int {
nums.count
}
/* 获取双向队列的长度 */
func size() -> Int {
_size
}
/* 判断双向队列是否为空 */
func isEmpty() -> Bool {
size() == 0
}
/* 计算环形数组索引 */
private func index(i: Int) -> Int {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部后,回到头部
// 当 i 越过数组头部后,回到尾部
(i + capacity()) % capacity()
}
/* 队首入队 */
func pushFirst(num: Int) {
if size() == capacity() {
print("双向队列已满")
return
}
// 队首指针向左移动一位
// 通过取余操作实现 front 越过数组头部后回到尾部
front = index(i: front - 1)
// 将 num 添加至队首
nums[front] = num
_size += 1
}
/* 队尾入队 */
func pushLast(num: Int) {
if size() == capacity() {
print("双向队列已满")
return
}
// 计算队尾指针,指向队尾索引 + 1
let rear = index(i: front + size())
// 将 num 添加至队尾
nums[rear] = num
_size += 1
}
/* 队首出队 */
func popFirst() -> Int {
let num = peekFirst()
// 队首指针向后移动一位
front = index(i: front + 1)
_size -= 1
return num
}
/* 队尾出队 */
func popLast() -> Int {
let num = peekLast()
_size -= 1
return num
}
/* 访问队首元素 */
func peekFirst() -> Int {
if isEmpty() {
fatalError("双向队列为空")
}
return nums[front]
}
/* 访问队尾元素 */
func peekLast() -> Int {
if isEmpty() {
fatalError("双向队列为空")
}
// 计算尾元素索引
let last = index(i: front + size() - 1)
return nums[last]
}
/* 返回数组用于打印 */
func toArray() -> [Int] {
// 仅转换有效长度范围内的列表元素
(front ..< front + size()).map { nums[index(i: $0)] }
}
}
/* 基于环形数组实现的双向队列 */
class ArrayDeque {
#nums; // 用于存储双向队列元素的数组
#front; // 队首指针,指向队首元素
#queSize; // 双向队列长度
/* 构造方法 */
constructor(capacity) {
this.#nums = new Array(capacity);
this.#front = 0;
this.#queSize = 0;
}
/* 获取双向队列的容量 */
capacity() {
return this.#nums.length;
}
/* 获取双向队列的长度 */
size() {
return this.#queSize;
}
/* 判断双向队列是否为空 */
isEmpty() {
return this.#queSize === 0;
}
/* 计算环形数组索引 */
index(i) {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部后,回到头部
// 当 i 越过数组头部后,回到尾部
return (i + this.capacity()) % this.capacity();
}
/* 队首入队 */
pushFirst(num) {
if (this.#queSize === this.capacity()) {
console.log('双向队列已满');
return;
}
// 队首指针向左移动一位
// 通过取余操作实现 front 越过数组头部后回到尾部
this.#front = this.index(this.#front - 1);
// 将 num 添加至队首
this.#nums[this.#front] = num;
this.#queSize++;
}
/* 队尾入队 */
pushLast(num) {
if (this.#queSize === this.capacity()) {
console.log('双向队列已满');
return;
}
// 计算队尾指针,指向队尾索引 + 1
const rear = this.index(this.#front + this.#queSize);
// 将 num 添加至队尾
this.#nums[rear] = num;
this.#queSize++;
}
/* 队首出队 */
popFirst() {
const num = this.peekFirst();
// 队首指针向后移动一位
this.#front = this.index(this.#front + 1);
this.#queSize--;
return num;
}
/* 队尾出队 */
popLast() {
const num = this.peekLast();
this.#queSize--;
return num;
}
/* 访问队首元素 */
peekFirst() {
if (this.isEmpty()) throw new Error('The Deque Is Empty.');
return this.#nums[this.#front];
}
/* 访问队尾元素 */
peekLast() {
if (this.isEmpty()) throw new Error('The Deque Is Empty.');
// 计算尾元素索引
const last = this.index(this.#front + this.#queSize - 1);
return this.#nums[last];
}
/* 返回数组用于打印 */
toArray() {
// 仅转换有效长度范围内的列表元素
const res = [];
for (let i = 0, j = this.#front; i < this.#queSize; i++, j++) {
res[i] = this.#nums[this.index(j)];
}
return res;
}
}
/* 基于环形数组实现的双向队列 */
class ArrayDeque {
private nums: number[]; // 用于存储双向队列元素的数组
private front: number; // 队首指针,指向队首元素
private queSize: number; // 双向队列长度
/* 构造方法 */
constructor(capacity: number) {
this.nums = new Array(capacity);
this.front = 0;
this.queSize = 0;
}
/* 获取双向队列的容量 */
capacity(): number {
return this.nums.length;
}
/* 获取双向队列的长度 */
size(): number {
return this.queSize;
}
/* 判断双向队列是否为空 */
isEmpty(): boolean {
return this.queSize === 0;
}
/* 计算环形数组索引 */
index(i: number): number {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部后,回到头部
// 当 i 越过数组头部后,回到尾部
return (i + this.capacity()) % this.capacity();
}
/* 队首入队 */
pushFirst(num: number): void {
if (this.queSize === this.capacity()) {
console.log('双向队列已满');
return;
}
// 队首指针向左移动一位
// 通过取余操作实现 front 越过数组头部后回到尾部
this.front = this.index(this.front - 1);
// 将 num 添加至队首
this.nums[this.front] = num;
this.queSize++;
}
/* 队尾入队 */
pushLast(num: number): void {
if (this.queSize === this.capacity()) {
console.log('双向队列已满');
return;
}
// 计算队尾指针,指向队尾索引 + 1
const rear: number = this.index(this.front + this.queSize);
// 将 num 添加至队尾
this.nums[rear] = num;
this.queSize++;
}
/* 队首出队 */
popFirst(): number {
const num: number = this.peekFirst();
// 队首指针向后移动一位
this.front = this.index(this.front + 1);
this.queSize--;
return num;
}
/* 队尾出队 */
popLast(): number {
const num: number = this.peekLast();
this.queSize--;
return num;
}
/* 访问队首元素 */
peekFirst(): number {
if (this.isEmpty()) throw new Error('The Deque Is Empty.');
return this.nums[this.front];
}
/* 访问队尾元素 */
peekLast(): number {
if (this.isEmpty()) throw new Error('The Deque Is Empty.');
// 计算尾元素索引
const last = this.index(this.front + this.queSize - 1);
return this.nums[last];
}
/* 返回数组用于打印 */
toArray(): number[] {
// 仅转换有效长度范围内的列表元素
const res: number[] = [];
for (let i = 0, j = this.front; i < this.queSize; i++, j++) {
res[i] = this.nums[this.index(j)];
}
return res;
}
}
/* 基于环形数组实现的双向队列 */
class ArrayDeque {
late List<int> _nums; // 用于存储双向队列元素的数组
late int _front; // 队首指针,指向队首元素
late int _queSize; // 双向队列长度
/* 构造方法 */
ArrayDeque(int capacity) {
this._nums = List.filled(capacity, 0);
this._front = this._queSize = 0;
}
/* 获取双向队列的容量 */
int capacity() {
return _nums.length;
}
/* 获取双向队列的长度 */
int size() {
return _queSize;
}
/* 判断双向队列是否为空 */
bool isEmpty() {
return _queSize == 0;
}
/* 计算环形数组索引 */
int index(int i) {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部后,回到头部
// 当 i 越过数组头部后,回到尾部
return (i + capacity()) % capacity();
}
/* 队首入队 */
void pushFirst(int _num) {
if (_queSize == capacity()) {
throw Exception("双向队列已满");
}
// 队首指针向左移动一位
// 通过取余操作实现 _front 越过数组头部后回到尾部
_front = index(_front - 1);
// 将 _num 添加至队首
_nums[_front] = _num;
_queSize++;
}
/* 队尾入队 */
void pushLast(int _num) {
if (_queSize == capacity()) {
throw Exception("双向队列已满");
}
// 计算队尾指针,指向队尾索引 + 1
int rear = index(_front + _queSize);
// 将 _num 添加至队尾
_nums[rear] = _num;
_queSize++;
}
/* 队首出队 */
int popFirst() {
int _num = peekFirst();
// 队首指针向右移动一位
_front = index(_front + 1);
_queSize--;
return _num;
}
/* 队尾出队 */
int popLast() {
int _num = peekLast();
_queSize--;
return _num;
}
/* 访问队首元素 */
int peekFirst() {
if (isEmpty()) {
throw Exception("双向队列为空");
}
return _nums[_front];
}
/* 访问队尾元素 */
int peekLast() {
if (isEmpty()) {
throw Exception("双向队列为空");
}
// 计算尾元素索引
int last = index(_front + _queSize - 1);
return _nums[last];
}
/* 返回数组用于打印 */
List<int> toArray() {
// 仅转换有效长度范围内的列表元素
List<int> res = List.filled(_queSize, 0);
for (int i = 0, j = _front; i < _queSize; i++, j++) {
res[i] = _nums[index(j)];
}
return res;
}
}
/* 基于环形数组实现的双向队列 */
struct ArrayDeque {
nums: Vec<i32>, // 用于存储双向队列元素的数组
front: usize, // 队首指针,指向队首元素
que_size: usize, // 双向队列长度
}
impl ArrayDeque {
/* 构造方法 */
pub fn new(capacity: usize) -> Self {
Self {
nums: vec![0; capacity],
front: 0,
que_size: 0,
}
}
/* 获取双向队列的容量 */
pub fn capacity(&self) -> usize {
self.nums.len()
}
/* 获取双向队列的长度 */
pub fn size(&self) -> usize {
self.que_size
}
/* 判断双向队列是否为空 */
pub fn is_empty(&self) -> bool {
self.que_size == 0
}
/* 计算环形数组索引 */
fn index(&self, i: i32) -> usize {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部后,回到头部
// 当 i 越过数组头部后,回到尾部
return ((i + self.capacity() as i32) % self.capacity() as i32) as usize;
}
/* 队首入队 */
pub fn push_first(&mut self, num: i32) {
if self.que_size == self.capacity() {
println!("双向队列已满");
return;
}
// 队首指针向左移动一位
// 通过取余操作实现 front 越过数组头部后回到尾部
self.front = self.index(self.front as i32 - 1);
// 将 num 添加至队首
self.nums[self.front] = num;
self.que_size += 1;
}
/* 队尾入队 */
pub fn push_last(&mut self, num: i32) {
if self.que_size == self.capacity() {
println!("双向队列已满");
return;
}
// 计算队尾指针,指向队尾索引 + 1
let rear = self.index(self.front as i32 + self.que_size as i32);
// 将 num 添加至队尾
self.nums[rear] = num;
self.que_size += 1;
}
/* 队首出队 */
fn pop_first(&mut self) -> i32 {
let num = self.peek_first();
// 队首指针向后移动一位
self.front = self.index(self.front as i32 + 1);
self.que_size -= 1;
num
}
/* 队尾出队 */
fn pop_last(&mut self) -> i32 {
let num = self.peek_last();
self.que_size -= 1;
num
}
/* 访问队首元素 */
fn peek_first(&self) -> i32 {
if self.is_empty() {
panic!("双向队列为空")
};
self.nums[self.front]
}
/* 访问队尾元素 */
fn peek_last(&self) -> i32 {
if self.is_empty() {
panic!("双向队列为空")
};
// 计算尾元素索引
let last = self.index(self.front as i32 + self.que_size as i32 - 1);
self.nums[last]
}
/* 返回数组用于打印 */
fn to_array(&self) -> Vec<i32> {
// 仅转换有效长度范围内的列表元素
let mut res = vec![0; self.que_size];
let mut j = self.front;
for i in 0..self.que_size {
res[i] = self.nums[self.index(j as i32)];
j += 1;
}
res
}
}
/* 基于环形数组实现的双向队列 */
typedef struct {
int *nums; // 用于存储队列元素的数组
int front; // 队首指针,指向队首元素
int queSize; // 尾指针,指向队尾 + 1
int queCapacity; // 队列容量
} ArrayDeque;
/* 构造函数 */
ArrayDeque *newArrayDeque(int capacity) {
ArrayDeque *deque = (ArrayDeque *)malloc(sizeof(ArrayDeque));
// 初始化数组
deque->queCapacity = capacity;
deque->nums = (int *)malloc(sizeof(int) * deque->queCapacity);
deque->front = deque->queSize = 0;
return deque;
}
/* 析构函数 */
void delArrayDeque(ArrayDeque *deque) {
free(deque->nums);
free(deque);
}
/* 获取双向队列的容量 */
int capacity(ArrayDeque *deque) {
return deque->queCapacity;
}
/* 获取双向队列的长度 */
int size(ArrayDeque *deque) {
return deque->queSize;
}
/* 判断双向队列是否为空 */
bool empty(ArrayDeque *deque) {
return deque->queSize == 0;
}
/* 计算环形数组索引 */
int dequeIndex(ArrayDeque *deque, int i) {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部时,回到头部
// 当 i 越过数组头部后,回到尾部
return ((i + capacity(deque)) % capacity(deque));
}
/* 队首入队 */
void pushFirst(ArrayDeque *deque, int num) {
if (deque->queSize == capacity(deque)) {
printf("双向队列已满\r\n");
return;
}
// 队首指针向左移动一位
// 通过取余操作实现 front 越过数组头部回到尾部
deque->front = dequeIndex(deque, deque->front - 1);
// 将 num 添加到队首
deque->nums[deque->front] = num;
deque->queSize++;
}
/* 队尾入队 */
void pushLast(ArrayDeque *deque, int num) {
if (deque->queSize == capacity(deque)) {
printf("双向队列已满\r\n");
return;
}
// 计算队尾指针,指向队尾索引 + 1
int rear = dequeIndex(deque, deque->front + deque->queSize);
// 将 num 添加至队尾
deque->nums[rear] = num;
deque->queSize++;
}
/* 访问队首元素 */
int peekFirst(ArrayDeque *deque) {
// 访问异常:双向队列为空
assert(empty(deque) == 0);
return deque->nums[deque->front];
}
/* 访问队尾元素 */
int peekLast(ArrayDeque *deque) {
// 访问异常:双向队列为空
assert(empty(deque) == 0);
int last = dequeIndex(deque, deque->front + deque->queSize - 1);
return deque->nums[last];
}
/* 队首出队 */
int popFirst(ArrayDeque *deque) {
int num = peekFirst(deque);
// 队首指针向后移动一位
deque->front = dequeIndex(deque, deque->front + 1);
deque->queSize--;
return num;
}
/* 队尾出队 */
int popLast(ArrayDeque *deque) {
int num = peekLast(deque);
deque->queSize--;
return num;
}
/* 返回数组用于打印 */
int *toArray(ArrayDeque *deque, int *queSize) {
*queSize = deque->queSize;
int *res = (int *)calloc(deque->queSize, sizeof(int));
int j = deque->front;
for (int i = 0; i < deque->queSize; i++) {
res[i] = deque->nums[j % deque->queCapacity];
j++;
}
return res;
}
/* 构造方法 */
class ArrayDeque(capacity: Int) {
private var nums: IntArray = IntArray(capacity) // 用于存储双向队列元素的数组
private var front: Int = 0 // 队首指针,指向队首元素
private var queSize: Int = 0 // 双向队列长度
/* 获取双向队列的容量 */
fun capacity(): Int {
return nums.size
}
/* 获取双向队列的长度 */
fun size(): Int {
return queSize
}
/* 判断双向队列是否为空 */
fun isEmpty(): Boolean {
return queSize == 0
}
/* 计算环形数组索引 */
private fun index(i: Int): Int {
// 通过取余操作实现数组首尾相连
// 当 i 越过数组尾部后,回到头部
// 当 i 越过数组头部后,回到尾部
return (i + capacity()) % capacity()
}
/* 队首入队 */
fun pushFirst(num: Int) {
if (queSize == capacity()) {
println("双向队列已满")
return
}
// 队首指针向左移动一位
// 通过取余操作实现 front 越过数组头部后回到尾部
front = index(front - 1)
// 将 num 添加至队首
nums[front] = num
queSize++
}
/* 队尾入队 */
fun pushLast(num: Int) {
if (queSize == capacity()) {
println("双向队列已满")
return
}
// 计算队尾指针,指向队尾索引 + 1
val rear = index(front + queSize)
// 将 num 添加至队尾
nums[rear] = num
queSize++
}
/* 队首出队 */
fun popFirst(): Int {
val num = peekFirst()
// 队首指针向后移动一位
front = index(front + 1)
queSize--
return num
}
/* 队尾出队 */
fun popLast(): Int {
val num = peekLast()
queSize--
return num
}
/* 访问队首元素 */
fun peekFirst(): Int {
if (isEmpty()) throw IndexOutOfBoundsException()
return nums[front]
}
/* 访问队尾元素 */
fun peekLast(): Int {
if (isEmpty()) throw IndexOutOfBoundsException()
// 计算尾元素索引
val last = index(front + queSize - 1)
return nums[last]
}
/* 返回数组用于打印 */
fun toArray(): IntArray {
// 仅转换有效长度范围内的列表元素
val res = IntArray(queSize)
var i = 0
var j = front
while (i < queSize) {
res[i] = nums[index(j)]
i++
j++
}
return res
}
}
### 基于环形数组实现的双向队列 ###
class ArrayDeque
### 获取双向队列的长度 ###
attr_reader :size
### 构造方法 ###
def initialize(capacity)
@nums = Array.new(capacity, 0)
@front = 0
@size = 0
end
### 获取双向队列的容量 ###
def capacity
@nums.length
end
### 判断双向队列是否为空 ###
def is_empty?
size.zero?
end
### 队首入队 ###
def push_first(num)
if size == capacity
puts '双向队列已满'
return
end
# 队首指针向左移动一位
# 通过取余操作实现 front 越过数组头部后回到尾部
@front = index(@front - 1)
# 将 num 添加至队首
@nums[@front] = num
@size += 1
end
### 队尾入队 ###
def push_last(num)
if size == capacity
puts '双向队列已满'
return
end
# 计算队尾指针,指向队尾索引 + 1
rear = index(@front + size)
# 将 num 添加至队尾
@nums[rear] = num
@size += 1
end
### 队首出队 ###
def pop_first
num = peek_first
# 队首指针向后移动一位
@front = index(@front + 1)
@size -= 1
num
end
### 队尾出队 ###
def pop_last
num = peek_last
@size -= 1
num
end
### 访问队首元素 ###
def peek_first
raise IndexError, '双向队列为空' if is_empty?
@nums[@front]
end
### 访问队尾元素 ###
def peek_last
raise IndexError, '双向队列为空' if is_empty?
# 计算尾元素索引
last = index(@front + size - 1)
@nums[last]
end
### 返回数组用于打印 ###
def to_array
# 仅转换有效长度范围内的列表元素
res = []
for i in 0...size
res << @nums[index(@front + i)]
end
res
end
private
### 计算环形数组索引 ###
def index(i)
# 通过取余操作实现数组首尾相连
# 当 i 越过数组尾部后,回到头部
# 当 i 越过数组头部后,回到尾部
(i + capacity) % capacity
end
end
5.3.3 双向队列应用¶
双向队列兼具栈与队列的逻辑,因此它可以实现这两者的所有应用场景,同时提供更高的自由度。
我们知道,软件的“撤销”功能通常使用栈来实现:系统将每次更改操作 push
到栈中,然后通过 pop
实现撤销。然而,考虑到系统资源的限制,软件通常会限制撤销的步数(例如仅允许保存 \(50\) 步)。当栈的长度超过 \(50\) 时,软件需要在栈底(队首)执行删除操作。但栈无法实现该功能,此时就需要使用双向队列来替代栈。请注意,“撤销”的核心逻辑仍然遵循栈的先入后出原则,只是双向队列能够更加灵活地实现一些额外逻辑。