跳轉至

14.3   動態規劃解題思路

上兩節介紹了動態規劃問題的主要特徵,接下來我們一起探究兩個更加實用的問題。

  1. 如何判斷一個問題是不是動態規劃問題?
  2. 求解動態規劃問題該從何處入手,完整步驟是什麼?

14.3.1   問題判斷

總的來說,如果一個問題包含重疊子問題、最優子結構,並滿足無後效性,那麼它通常適合用動態規劃求解。然而,我們很難從問題描述中直接提取出這些特性。因此我們通常會放寬條件,先觀察問題是否適合使用回溯(窮舉)解決

適合用回溯解決的問題通常滿足“決策樹模型”,這種問題可以使用樹形結構來描述,其中每一個節點代表一個決策,每一條路徑代表一個決策序列。

換句話說,如果問題包含明確的決策概念,並且解是透過一系列決策產生的,那麼它就滿足決策樹模型,通常可以使用回溯來解決。

在此基礎上,動態規劃問題還有一些判斷的“加分項”。

  • 問題包含最大(小)或最多(少)等最最佳化描述。
  • 問題的狀態能夠使用一個串列、多維矩陣或樹來表示,並且一個狀態與其周圍的狀態存在遞推關係。

相應地,也存在一些“減分項”。

  • 問題的目標是找出所有可能的解決方案,而不是找出最優解。
  • 問題描述中有明顯的排列組合的特徵,需要返回具體的多個方案。

如果一個問題滿足決策樹模型,並具有較為明顯的“加分項”,我們就可以假設它是一個動態規劃問題,並在求解過程中驗證它。

14.3.2   問題求解步驟

動態規劃的解題流程會因問題的性質和難度而有所不同,但通常遵循以下步驟:描述決策,定義狀態,建立 \(dp\) 表,推導狀態轉移方程,確定邊界條件等。

為了更形象地展示解題步驟,我們使用一個經典問題“最小路徑和”來舉例。

Question

給定一個 \(n \times m\) 的二維網格 grid ,網格中的每個單元格包含一個非負整數,表示該單元格的代價。機器人以左上角單元格為起始點,每次只能向下或者向右移動一步,直至到達右下角單元格。請返回從左上角到右下角的最小路徑和。

圖 14-10 展示了一個例子,給定網格的最小路徑和為 \(13\)

最小路徑和示例資料

圖 14-10   最小路徑和示例資料

第一步:思考每輪的決策,定義狀態,從而得到 \(dp\)

本題的每一輪的決策就是從當前格子向下或向右走一步。設當前格子的行列索引為 \([i, j]\) ,則向下或向右走一步後,索引變為 \([i+1, j]\)\([i, j+1]\) 。因此,狀態應包含行索引和列索引兩個變數,記為 \([i, j]\)

狀態 \([i, j]\) 對應的子問題為:從起始點 \([0, 0]\) 走到 \([i, j]\) 的最小路徑和,解記為 \(dp[i, j]\)

至此,我們就得到了圖 14-11 所示的二維 \(dp\) 矩陣,其尺寸與輸入網格 \(grid\) 相同。

狀態定義與 dp 表

圖 14-11   狀態定義與 dp 表

Note

動態規劃和回溯過程可以描述為一個決策序列,而狀態由所有決策變數構成。它應當包含描述解題進度的所有變數,其包含了足夠的資訊,能夠用來推導出下一個狀態。

每個狀態都對應一個子問題,我們會定義一個 \(dp\) 表來儲存所有子問題的解,狀態的每個獨立變數都是 \(dp\) 表的一個維度。從本質上看,\(dp\) 表是狀態和子問題的解之間的對映。

第二步:找出最優子結構,進而推導出狀態轉移方程

對於狀態 \([i, j]\) ,它只能從上邊格子 \([i-1, j]\) 和左邊格子 \([i, j-1]\) 轉移而來。因此最優子結構為:到達 \([i, j]\) 的最小路徑和由 \([i, j-1]\) 的最小路徑和與 \([i-1, j]\) 的最小路徑和中較小的那一個決定。

根據以上分析,可推出圖 14-12 所示的狀態轉移方程:

\[ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j] \]

最優子結構與狀態轉移方程

圖 14-12   最優子結構與狀態轉移方程

Note

根據定義好的 \(dp\) 表,思考原問題和子問題的關係,找出透過子問題的最優解來構造原問題的最優解的方法,即最優子結構。

一旦我們找到了最優子結構,就可以使用它來構建出狀態轉移方程。

第三步:確定邊界條件和狀態轉移順序

在本題中,處在首行的狀態只能從其左邊的狀態得來,處在首列的狀態只能從其上邊的狀態得來,因此首行 \(i = 0\) 和首列 \(j = 0\) 是邊界條件。

如圖 14-13 所示,由於每個格子是由其左方格子和上方格子轉移而來,因此我們使用迴圈來走訪矩陣,外迴圈走訪各行,內迴圈走訪各列。

邊界條件與狀態轉移順序

圖 14-13   邊界條件與狀態轉移順序

Note

邊界條件在動態規劃中用於初始化 \(dp\) 表,在搜尋中用於剪枝。

狀態轉移順序的核心是要保證在計算當前問題的解時,所有它依賴的更小子問題的解都已經被正確地計算出來。

根據以上分析,我們已經可以直接寫出動態規劃程式碼。然而子問題分解是一種從頂至底的思想,因此按照“暴力搜尋 \(\rightarrow\) 記憶化搜尋 \(\rightarrow\) 動態規劃”的順序實現更加符合思維習慣。

1.   方法一:暴力搜尋

從狀態 \([i, j]\) 開始搜尋,不斷分解為更小的狀態 \([i-1, j]\)\([i, j-1]\) ,遞迴函式包括以下要素。

  • 遞迴參數:狀態 \([i, j]\)
  • 返回值:從 \([0, 0]\)\([i, j]\) 的最小路徑和 \(dp[i, j]\)
  • 終止條件:當 \(i = 0\)\(j = 0\) 時,返回代價 \(grid[0, 0]\)
  • 剪枝:當 \(i < 0\) 時或 \(j < 0\) 時索引越界,此時返回代價 \(+\infty\) ,代表不可行。

實現程式碼如下:

min_path_sum.py
def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:
    """最小路徑和:暴力搜尋"""
    # 若為左上角單元格,則終止搜尋
    if i == 0 and j == 0:
        return grid[0][0]
    # 若行列索引越界,則返回 +∞ 代價
    if i < 0 or j < 0:
        return inf
    # 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    up = min_path_sum_dfs(grid, i - 1, j)
    left = min_path_sum_dfs(grid, i, j - 1)
    # 返回從左上角到 (i, j) 的最小路徑代價
    return min(left, up) + grid[i][j]
min_path_sum.cpp
/* 最小路徑和:暴力搜尋 */
int minPathSumDFS(vector<vector<int>> &grid, int i, int j) {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 && j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return INT_MAX;
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    int up = minPathSumDFS(grid, i - 1, j);
    int left = minPathSumDFS(grid, i, j - 1);
    // 返回從左上角到 (i, j) 的最小路徑代價
    return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
}
min_path_sum.java
/* 最小路徑和:暴力搜尋 */
int minPathSumDFS(int[][] grid, int i, int j) {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 && j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return Integer.MAX_VALUE;
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    int up = minPathSumDFS(grid, i - 1, j);
    int left = minPathSumDFS(grid, i, j - 1);
    // 返回從左上角到 (i, j) 的最小路徑代價
    return Math.min(left, up) + grid[i][j];
}
min_path_sum.cs
/* 最小路徑和:暴力搜尋 */
int MinPathSumDFS(int[][] grid, int i, int j) {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 && j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return int.MaxValue;
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    int up = MinPathSumDFS(grid, i - 1, j);
    int left = MinPathSumDFS(grid, i, j - 1);
    // 返回從左上角到 (i, j) 的最小路徑代價
    return Math.Min(left, up) + grid[i][j];
}
min_path_sum.go
/* 最小路徑和:暴力搜尋 */
func minPathSumDFS(grid [][]int, i, j int) int {
    // 若為左上角單元格,則終止搜尋
    if i == 0 && j == 0 {
        return grid[0][0]
    }
    // 若行列索引越界,則返回 +∞ 代價
    if i < 0 || j < 0 {
        return math.MaxInt
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    up := minPathSumDFS(grid, i-1, j)
    left := minPathSumDFS(grid, i, j-1)
    // 返回從左上角到 (i, j) 的最小路徑代價
    return int(math.Min(float64(left), float64(up))) + grid[i][j]
}
min_path_sum.swift
/* 最小路徑和:暴力搜尋 */
func minPathSumDFS(grid: [[Int]], i: Int, j: Int) -> Int {
    // 若為左上角單元格,則終止搜尋
    if i == 0, j == 0 {
        return grid[0][0]
    }
    // 若行列索引越界,則返回 +∞ 代價
    if i < 0 || j < 0 {
        return .max
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    let up = minPathSumDFS(grid: grid, i: i - 1, j: j)
    let left = minPathSumDFS(grid: grid, i: i, j: j - 1)
    // 返回從左上角到 (i, j) 的最小路徑代價
    return min(left, up) + grid[i][j]
}
min_path_sum.js
/* 最小路徑和:暴力搜尋 */
function minPathSumDFS(grid, i, j) {
    // 若為左上角單元格,則終止搜尋
    if (i === 0 && j === 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return Infinity;
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    const up = minPathSumDFS(grid, i - 1, j);
    const left = minPathSumDFS(grid, i, j - 1);
    // 返回從左上角到 (i, j) 的最小路徑代價
    return Math.min(left, up) + grid[i][j];
}
min_path_sum.ts
/* 最小路徑和:暴力搜尋 */
function minPathSumDFS(
    grid: Array<Array<number>>,
    i: number,
    j: number
): number {
    // 若為左上角單元格,則終止搜尋
    if (i === 0 && j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return Infinity;
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    const up = minPathSumDFS(grid, i - 1, j);
    const left = minPathSumDFS(grid, i, j - 1);
    // 返回從左上角到 (i, j) 的最小路徑代價
    return Math.min(left, up) + grid[i][j];
}
min_path_sum.dart
/* 最小路徑和:暴力搜尋 */
int minPathSumDFS(List<List<int>> grid, int i, int j) {
  // 若為左上角單元格,則終止搜尋
  if (i == 0 && j == 0) {
    return grid[0][0];
  }
  // 若行列索引越界,則返回 +∞ 代價
  if (i < 0 || j < 0) {
    // 在 Dart 中,int 型別是固定範圍的整數,不存在表示“無窮大”的值
    return BigInt.from(2).pow(31).toInt();
  }
  // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
  int up = minPathSumDFS(grid, i - 1, j);
  int left = minPathSumDFS(grid, i, j - 1);
  // 返回從左上角到 (i, j) 的最小路徑代價
  return min(left, up) + grid[i][j];
}
min_path_sum.rs
/* 最小路徑和:暴力搜尋 */
fn min_path_sum_dfs(grid: &Vec<Vec<i32>>, i: i32, j: i32) -> i32 {
    // 若為左上角單元格,則終止搜尋
    if i == 0 && j == 0 {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if i < 0 || j < 0 {
        return i32::MAX;
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    let up = min_path_sum_dfs(grid, i - 1, j);
    let left = min_path_sum_dfs(grid, i, j - 1);
    // 返回從左上角到 (i, j) 的最小路徑代價
    std::cmp::min(left, up) + grid[i as usize][j as usize]
}
min_path_sum.c
/* 最小路徑和:暴力搜尋 */
int minPathSumDFS(int grid[MAX_SIZE][MAX_SIZE], int i, int j) {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 && j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return INT_MAX;
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    int up = minPathSumDFS(grid, i - 1, j);
    int left = minPathSumDFS(grid, i, j - 1);
    // 返回從左上角到 (i, j) 的最小路徑代價
    return myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
}
min_path_sum.kt
/* 最小路徑和:暴力搜尋 */
fun minPathSumDFS(grid: Array<IntArray>, i: Int, j: Int): Int {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 && j == 0) {
        return grid[0][0]
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return Int.MAX_VALUE
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    val up = minPathSumDFS(grid, i - 1, j)
    val left = minPathSumDFS(grid, i, j - 1)
    // 返回從左上角到 (i, j) 的最小路徑代價
    return min(left, up) + grid[i][j]
}
min_path_sum.rb
### 最小路徑和:暴力搜尋 ###
def min_path_sum_dfs(grid, i, j)
  # 若為左上角單元格,則終止搜尋
  return grid[i][j] if i == 0 && j == 0
  # 若行列索引越界,則返回 +∞ 代價
  return Float::INFINITY if i < 0 || j < 0
  # 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
  up = min_path_sum_dfs(grid, i - 1, j)
  left = min_path_sum_dfs(grid, i, j - 1)
  # 返回從左上角到 (i, j) 的最小路徑代價
  [left, up].min + grid[i][j]
end
min_path_sum.zig
// 最小路徑和:暴力搜尋
fn minPathSumDFS(grid: anytype, i: i32, j: i32) i32 {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 and j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 or j < 0) {
        return std.math.maxInt(i32);
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    var up = minPathSumDFS(grid, i - 1, j);
    var left = minPathSumDFS(grid, i, j - 1);
    // 返回從左上角到 (i, j) 的最小路徑代價
    return @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
}
視覺化執行

圖 14-14 給出了以 \(dp[2, 1]\) 為根節點的遞迴樹,其中包含一些重疊子問題,其數量會隨著網格 grid 的尺寸變大而急劇增多。

從本質上看,造成重疊子問題的原因為:存在多條路徑可以從左上角到達某一單元格

暴力搜尋遞迴樹

圖 14-14   暴力搜尋遞迴樹

每個狀態都有向下和向右兩種選擇,從左上角走到右下角總共需要 \(m + n - 2\) 步,所以最差時間複雜度為 \(O(2^{m + n})\) 。請注意,這種計算方式未考慮臨近網格邊界的情況,當到達網路邊界時只剩下一種選擇,因此實際的路徑數量會少一些。

2.   方法二:記憶化搜尋

我們引入一個和網格 grid 相同尺寸的記憶串列 mem ,用於記錄各個子問題的解,並將重疊子問題進行剪枝:

min_path_sum.py
def min_path_sum_dfs_mem(
    grid: list[list[int]], mem: list[list[int]], i: int, j: int
) -> int:
    """最小路徑和:記憶化搜尋"""
    # 若為左上角單元格,則終止搜尋
    if i == 0 and j == 0:
        return grid[0][0]
    # 若行列索引越界,則返回 +∞ 代價
    if i < 0 or j < 0:
        return inf
    # 若已有記錄,則直接返回
    if mem[i][j] != -1:
        return mem[i][j]
    # 左邊和上邊單元格的最小路徑代價
    up = min_path_sum_dfs_mem(grid, mem, i - 1, j)
    left = min_path_sum_dfs_mem(grid, mem, i, j - 1)
    # 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i][j] = min(left, up) + grid[i][j]
    return mem[i][j]
min_path_sum.cpp
/* 最小路徑和:記憶化搜尋 */
int minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 && j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return INT_MAX;
    }
    // 若已有記錄,則直接返回
    if (mem[i][j] != -1) {
        return mem[i][j];
    }
    // 左邊和上邊單元格的最小路徑代價
    int up = minPathSumDFSMem(grid, mem, i - 1, j);
    int left = minPathSumDFSMem(grid, mem, i, j - 1);
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
    return mem[i][j];
}
min_path_sum.java
/* 最小路徑和:記憶化搜尋 */
int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 && j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return Integer.MAX_VALUE;
    }
    // 若已有記錄,則直接返回
    if (mem[i][j] != -1) {
        return mem[i][j];
    }
    // 左邊和上邊單元格的最小路徑代價
    int up = minPathSumDFSMem(grid, mem, i - 1, j);
    int left = minPathSumDFSMem(grid, mem, i, j - 1);
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i][j] = Math.min(left, up) + grid[i][j];
    return mem[i][j];
}
min_path_sum.cs
/* 最小路徑和:記憶化搜尋 */
int MinPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 && j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return int.MaxValue;
    }
    // 若已有記錄,則直接返回
    if (mem[i][j] != -1) {
        return mem[i][j];
    }
    // 左邊和上邊單元格的最小路徑代價
    int up = MinPathSumDFSMem(grid, mem, i - 1, j);
    int left = MinPathSumDFSMem(grid, mem, i, j - 1);
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i][j] = Math.Min(left, up) + grid[i][j];
    return mem[i][j];
}
min_path_sum.go
/* 最小路徑和:記憶化搜尋 */
func minPathSumDFSMem(grid, mem [][]int, i, j int) int {
    // 若為左上角單元格,則終止搜尋
    if i == 0 && j == 0 {
        return grid[0][0]
    }
    // 若行列索引越界,則返回 +∞ 代價
    if i < 0 || j < 0 {
        return math.MaxInt
    }
    // 若已有記錄,則直接返回
    if mem[i][j] != -1 {
        return mem[i][j]
    }
    // 左邊和上邊單元格的最小路徑代價
    up := minPathSumDFSMem(grid, mem, i-1, j)
    left := minPathSumDFSMem(grid, mem, i, j-1)
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i][j] = int(math.Min(float64(left), float64(up))) + grid[i][j]
    return mem[i][j]
}
min_path_sum.swift
/* 最小路徑和:記憶化搜尋 */
func minPathSumDFSMem(grid: [[Int]], mem: inout [[Int]], i: Int, j: Int) -> Int {
    // 若為左上角單元格,則終止搜尋
    if i == 0, j == 0 {
        return grid[0][0]
    }
    // 若行列索引越界,則返回 +∞ 代價
    if i < 0 || j < 0 {
        return .max
    }
    // 若已有記錄,則直接返回
    if mem[i][j] != -1 {
        return mem[i][j]
    }
    // 左邊和上邊單元格的最小路徑代價
    let up = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)
    let left = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i][j] = min(left, up) + grid[i][j]
    return mem[i][j]
}
min_path_sum.js
/* 最小路徑和:記憶化搜尋 */
function minPathSumDFSMem(grid, mem, i, j) {
    // 若為左上角單元格,則終止搜尋
    if (i === 0 && j === 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return Infinity;
    }
    // 若已有記錄,則直接返回
    if (mem[i][j] !== -1) {
        return mem[i][j];
    }
    // 左邊和上邊單元格的最小路徑代價
    const up = minPathSumDFSMem(grid, mem, i - 1, j);
    const left = minPathSumDFSMem(grid, mem, i, j - 1);
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i][j] = Math.min(left, up) + grid[i][j];
    return mem[i][j];
}
min_path_sum.ts
/* 最小路徑和:記憶化搜尋 */
function minPathSumDFSMem(
    grid: Array<Array<number>>,
    mem: Array<Array<number>>,
    i: number,
    j: number
): number {
    // 若為左上角單元格,則終止搜尋
    if (i === 0 && j === 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return Infinity;
    }
    // 若已有記錄,則直接返回
    if (mem[i][j] != -1) {
        return mem[i][j];
    }
    // 左邊和上邊單元格的最小路徑代價
    const up = minPathSumDFSMem(grid, mem, i - 1, j);
    const left = minPathSumDFSMem(grid, mem, i, j - 1);
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i][j] = Math.min(left, up) + grid[i][j];
    return mem[i][j];
}
min_path_sum.dart
/* 最小路徑和:記憶化搜尋 */
int minPathSumDFSMem(List<List<int>> grid, List<List<int>> mem, int i, int j) {
  // 若為左上角單元格,則終止搜尋
  if (i == 0 && j == 0) {
    return grid[0][0];
  }
  // 若行列索引越界,則返回 +∞ 代價
  if (i < 0 || j < 0) {
    // 在 Dart 中,int 型別是固定範圍的整數,不存在表示“無窮大”的值
    return BigInt.from(2).pow(31).toInt();
  }
  // 若已有記錄,則直接返回
  if (mem[i][j] != -1) {
    return mem[i][j];
  }
  // 左邊和上邊單元格的最小路徑代價
  int up = minPathSumDFSMem(grid, mem, i - 1, j);
  int left = minPathSumDFSMem(grid, mem, i, j - 1);
  // 記錄並返回左上角到 (i, j) 的最小路徑代價
  mem[i][j] = min(left, up) + grid[i][j];
  return mem[i][j];
}
min_path_sum.rs
/* 最小路徑和:記憶化搜尋 */
fn min_path_sum_dfs_mem(grid: &Vec<Vec<i32>>, mem: &mut Vec<Vec<i32>>, i: i32, j: i32) -> i32 {
    // 若為左上角單元格,則終止搜尋
    if i == 0 && j == 0 {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if i < 0 || j < 0 {
        return i32::MAX;
    }
    // 若已有記錄,則直接返回
    if mem[i as usize][j as usize] != -1 {
        return mem[i as usize][j as usize];
    }
    // 左邊和上邊單元格的最小路徑代價
    let up = min_path_sum_dfs_mem(grid, mem, i - 1, j);
    let left = min_path_sum_dfs_mem(grid, mem, i, j - 1);
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i as usize][j as usize] = std::cmp::min(left, up) + grid[i as usize][j as usize];
    mem[i as usize][j as usize]
}
min_path_sum.c
/* 最小路徑和:記憶化搜尋 */
int minPathSumDFSMem(int grid[MAX_SIZE][MAX_SIZE], int mem[MAX_SIZE][MAX_SIZE], int i, int j) {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 && j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return INT_MAX;
    }
    // 若已有記錄,則直接返回
    if (mem[i][j] != -1) {
        return mem[i][j];
    }
    // 左邊和上邊單元格的最小路徑代價
    int up = minPathSumDFSMem(grid, mem, i - 1, j);
    int left = minPathSumDFSMem(grid, mem, i, j - 1);
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i][j] = myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
    return mem[i][j];
}
min_path_sum.kt
/* 最小路徑和:記憶化搜尋 */
fun minPathSumDFSMem(
    grid: Array<IntArray>,
    mem: Array<IntArray>,
    i: Int,
    j: Int
): Int {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 && j == 0) {
        return grid[0][0]
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 || j < 0) {
        return Int.MAX_VALUE
    }
    // 若已有記錄,則直接返回
    if (mem[i][j] != -1) {
        return mem[i][j]
    }
    // 左邊和上邊單元格的最小路徑代價
    val up = minPathSumDFSMem(grid, mem, i - 1, j)
    val left = minPathSumDFSMem(grid, mem, i, j - 1)
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[i][j] = min(left, up) + grid[i][j]
    return mem[i][j]
}
min_path_sum.rb
### 最小路徑和:記憶化搜尋 ###
def min_path_sum_dfs_mem(grid, mem, i, j)
  # 若為左上角單元格,則終止搜尋
  return grid[0][0] if i == 0 && j == 0
  # 若行列索引越界,則返回 +∞ 代價
  return Float::INFINITY if i < 0 || j < 0
  # 若已有記錄,則直接返回
  return mem[i][j] if mem[i][j] != -1
  # 左邊和上邊單元格的最小路徑代價
  up = min_path_sum_dfs_mem(grid, mem, i - 1, j)
  left = min_path_sum_dfs_mem(grid, mem, i, j - 1)
  # 記錄並返回左上角到 (i, j) 的最小路徑代價
  mem[i][j] = [left, up].min + grid[i][j]
end
min_path_sum.zig
// 最小路徑和:記憶化搜尋
fn minPathSumDFSMem(grid: anytype, mem: anytype, i: i32, j: i32) i32 {
    // 若為左上角單元格,則終止搜尋
    if (i == 0 and j == 0) {
        return grid[0][0];
    }
    // 若行列索引越界,則返回 +∞ 代價
    if (i < 0 or j < 0) {
        return std.math.maxInt(i32);
    }
    // 若已有記錄,則直接返回
    if (mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] != -1) {
        return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
    }
    // 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
    var up = minPathSumDFSMem(grid, mem, i - 1, j);
    var left = minPathSumDFSMem(grid, mem, i, j - 1);
    // 返回從左上角到 (i, j) 的最小路徑代價
    // 記錄並返回左上角到 (i, j) 的最小路徑代價
    mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] = @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
    return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
}
視覺化執行

如圖 14-15 所示,在引入記憶化後,所有子問題的解只需計算一次,因此時間複雜度取決於狀態總數,即網格尺寸 \(O(nm)\)

記憶化搜尋遞迴樹

圖 14-15   記憶化搜尋遞迴樹

3.   方法三:動態規劃

基於迭代實現動態規劃解法,程式碼如下所示:

min_path_sum.py
def min_path_sum_dp(grid: list[list[int]]) -> int:
    """最小路徑和:動態規劃"""
    n, m = len(grid), len(grid[0])
    # 初始化 dp 表
    dp = [[0] * m for _ in range(n)]
    dp[0][0] = grid[0][0]
    # 狀態轉移:首行
    for j in range(1, m):
        dp[0][j] = dp[0][j - 1] + grid[0][j]
    # 狀態轉移:首列
    for i in range(1, n):
        dp[i][0] = dp[i - 1][0] + grid[i][0]
    # 狀態轉移:其餘行和列
    for i in range(1, n):
        for j in range(1, m):
            dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
    return dp[n - 1][m - 1]
min_path_sum.cpp
/* 最小路徑和:動態規劃 */
int minPathSumDP(vector<vector<int>> &grid) {
    int n = grid.size(), m = grid[0].size();
    // 初始化 dp 表
    vector<vector<int>> dp(n, vector<int>(m));
    dp[0][0] = grid[0][0];
    // 狀態轉移:首行
    for (int j = 1; j < m; j++) {
        dp[0][j] = dp[0][j - 1] + grid[0][j];
    }
    // 狀態轉移:首列
    for (int i = 1; i < n; i++) {
        dp[i][0] = dp[i - 1][0] + grid[i][0];
    }
    // 狀態轉移:其餘行和列
    for (int i = 1; i < n; i++) {
        for (int j = 1; j < m; j++) {
            dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
        }
    }
    return dp[n - 1][m - 1];
}
min_path_sum.java
/* 最小路徑和:動態規劃 */
int minPathSumDP(int[][] grid) {
    int n = grid.length, m = grid[0].length;
    // 初始化 dp 表
    int[][] dp = new int[n][m];
    dp[0][0] = grid[0][0];
    // 狀態轉移:首行
    for (int j = 1; j < m; j++) {
        dp[0][j] = dp[0][j - 1] + grid[0][j];
    }
    // 狀態轉移:首列
    for (int i = 1; i < n; i++) {
        dp[i][0] = dp[i - 1][0] + grid[i][0];
    }
    // 狀態轉移:其餘行和列
    for (int i = 1; i < n; i++) {
        for (int j = 1; j < m; j++) {
            dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
        }
    }
    return dp[n - 1][m - 1];
}
min_path_sum.cs
/* 最小路徑和:動態規劃 */
int MinPathSumDP(int[][] grid) {
    int n = grid.Length, m = grid[0].Length;
    // 初始化 dp 表
    int[,] dp = new int[n, m];
    dp[0, 0] = grid[0][0];
    // 狀態轉移:首行
    for (int j = 1; j < m; j++) {
        dp[0, j] = dp[0, j - 1] + grid[0][j];
    }
    // 狀態轉移:首列
    for (int i = 1; i < n; i++) {
        dp[i, 0] = dp[i - 1, 0] + grid[i][0];
    }
    // 狀態轉移:其餘行和列
    for (int i = 1; i < n; i++) {
        for (int j = 1; j < m; j++) {
            dp[i, j] = Math.Min(dp[i, j - 1], dp[i - 1, j]) + grid[i][j];
        }
    }
    return dp[n - 1, m - 1];
}
min_path_sum.go
/* 最小路徑和:動態規劃 */
func minPathSumDP(grid [][]int) int {
    n, m := len(grid), len(grid[0])
    // 初始化 dp 表
    dp := make([][]int, n)
    for i := 0; i < n; i++ {
        dp[i] = make([]int, m)
    }
    dp[0][0] = grid[0][0]
    // 狀態轉移:首行
    for j := 1; j < m; j++ {
        dp[0][j] = dp[0][j-1] + grid[0][j]
    }
    // 狀態轉移:首列
    for i := 1; i < n; i++ {
        dp[i][0] = dp[i-1][0] + grid[i][0]
    }
    // 狀態轉移:其餘行和列
    for i := 1; i < n; i++ {
        for j := 1; j < m; j++ {
            dp[i][j] = int(math.Min(float64(dp[i][j-1]), float64(dp[i-1][j]))) + grid[i][j]
        }
    }
    return dp[n-1][m-1]
}
min_path_sum.swift
/* 最小路徑和:動態規劃 */
func minPathSumDP(grid: [[Int]]) -> Int {
    let n = grid.count
    let m = grid[0].count
    // 初始化 dp 表
    var dp = Array(repeating: Array(repeating: 0, count: m), count: n)
    dp[0][0] = grid[0][0]
    // 狀態轉移:首行
    for j in 1 ..< m {
        dp[0][j] = dp[0][j - 1] + grid[0][j]
    }
    // 狀態轉移:首列
    for i in 1 ..< n {
        dp[i][0] = dp[i - 1][0] + grid[i][0]
    }
    // 狀態轉移:其餘行和列
    for i in 1 ..< n {
        for j in 1 ..< m {
            dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
        }
    }
    return dp[n - 1][m - 1]
}
min_path_sum.js
/* 最小路徑和:動態規劃 */
function minPathSumDP(grid) {
    const n = grid.length,
        m = grid[0].length;
    // 初始化 dp 表
    const dp = Array.from({ length: n }, () =>
        Array.from({ length: m }, () => 0)
    );
    dp[0][0] = grid[0][0];
    // 狀態轉移:首行
    for (let j = 1; j < m; j++) {
        dp[0][j] = dp[0][j - 1] + grid[0][j];
    }
    // 狀態轉移:首列
    for (let i = 1; i < n; i++) {
        dp[i][0] = dp[i - 1][0] + grid[i][0];
    }
    // 狀態轉移:其餘行和列
    for (let i = 1; i < n; i++) {
        for (let j = 1; j < m; j++) {
            dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
        }
    }
    return dp[n - 1][m - 1];
}
min_path_sum.ts
/* 最小路徑和:動態規劃 */
function minPathSumDP(grid: Array<Array<number>>): number {
    const n = grid.length,
        m = grid[0].length;
    // 初始化 dp 表
    const dp = Array.from({ length: n }, () =>
        Array.from({ length: m }, () => 0)
    );
    dp[0][0] = grid[0][0];
    // 狀態轉移:首行
    for (let j = 1; j < m; j++) {
        dp[0][j] = dp[0][j - 1] + grid[0][j];
    }
    // 狀態轉移:首列
    for (let i = 1; i < n; i++) {
        dp[i][0] = dp[i - 1][0] + grid[i][0];
    }
    // 狀態轉移:其餘行和列
    for (let i = 1; i < n; i++) {
        for (let j: number = 1; j < m; j++) {
            dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
        }
    }
    return dp[n - 1][m - 1];
}
min_path_sum.dart
/* 最小路徑和:動態規劃 */
int minPathSumDP(List<List<int>> grid) {
  int n = grid.length, m = grid[0].length;
  // 初始化 dp 表
  List<List<int>> dp = List.generate(n, (i) => List.filled(m, 0));
  dp[0][0] = grid[0][0];
  // 狀態轉移:首行
  for (int j = 1; j < m; j++) {
    dp[0][j] = dp[0][j - 1] + grid[0][j];
  }
  // 狀態轉移:首列
  for (int i = 1; i < n; i++) {
    dp[i][0] = dp[i - 1][0] + grid[i][0];
  }
  // 狀態轉移:其餘行和列
  for (int i = 1; i < n; i++) {
    for (int j = 1; j < m; j++) {
      dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
    }
  }
  return dp[n - 1][m - 1];
}
min_path_sum.rs
/* 最小路徑和:動態規劃 */
fn min_path_sum_dp(grid: &Vec<Vec<i32>>) -> i32 {
    let (n, m) = (grid.len(), grid[0].len());
    // 初始化 dp 表
    let mut dp = vec![vec![0; m]; n];
    dp[0][0] = grid[0][0];
    // 狀態轉移:首行
    for j in 1..m {
        dp[0][j] = dp[0][j - 1] + grid[0][j];
    }
    // 狀態轉移:首列
    for i in 1..n {
        dp[i][0] = dp[i - 1][0] + grid[i][0];
    }
    // 狀態轉移:其餘行和列
    for i in 1..n {
        for j in 1..m {
            dp[i][j] = std::cmp::min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
        }
    }
    dp[n - 1][m - 1]
}
min_path_sum.c
/* 最小路徑和:動態規劃 */
int minPathSumDP(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
    // 初始化 dp 表
    int **dp = malloc(n * sizeof(int *));
    for (int i = 0; i < n; i++) {
        dp[i] = calloc(m, sizeof(int));
    }
    dp[0][0] = grid[0][0];
    // 狀態轉移:首行
    for (int j = 1; j < m; j++) {
        dp[0][j] = dp[0][j - 1] + grid[0][j];
    }
    // 狀態轉移:首列
    for (int i = 1; i < n; i++) {
        dp[i][0] = dp[i - 1][0] + grid[i][0];
    }
    // 狀態轉移:其餘行和列
    for (int i = 1; i < n; i++) {
        for (int j = 1; j < m; j++) {
            dp[i][j] = myMin(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
        }
    }
    int res = dp[n - 1][m - 1];
    // 釋放記憶體
    for (int i = 0; i < n; i++) {
        free(dp[i]);
    }
    return res;
}
min_path_sum.kt
/* 最小路徑和:動態規劃 */
fun minPathSumDP(grid: Array<IntArray>): Int {
    val n = grid.size
    val m = grid[0].size
    // 初始化 dp 表
    val dp = Array(n) { IntArray(m) }
    dp[0][0] = grid[0][0]
    // 狀態轉移:首行
    for (j in 1..<m) {
        dp[0][j] = dp[0][j - 1] + grid[0][j]
    }
    // 狀態轉移:首列
    for (i in 1..<n) {
        dp[i][0] = dp[i - 1][0] + grid[i][0]
    }
    // 狀態轉移:其餘行和列
    for (i in 1..<n) {
        for (j in 1..<m) {
            dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
        }
    }
    return dp[n - 1][m - 1]
}
min_path_sum.rb
### 最小路徑和:動態規劃 ###
def min_path_sum_dp(grid)
  n, m = grid.length, grid.first.length
  # 初始化 dp 表
  dp = Array.new(n) { Array.new(m, 0) }
  dp[0][0] = grid[0][0]
  # 狀態轉移:首行
  (1...m).each { |j| dp[0][j] = dp[0][j - 1] + grid[0][j] }
  # 狀態轉移:首列
  (1...n).each { |i| dp[i][0] = dp[i - 1][0] + grid[i][0] }
  # 狀態轉移:其餘行和列
  for i in 1...n
    for j in 1...m
      dp[i][j] = [dp[i][j - 1], dp[i - 1][j]].min + grid[i][j]
    end
  end
  dp[n -1][m -1]
end
min_path_sum.zig
// 最小路徑和:動態規劃
fn minPathSumDP(comptime grid: anytype) i32 {
    comptime var n = grid.len;
    comptime var m = grid[0].len;
    // 初始化 dp 表
    var dp = [_][m]i32{[_]i32{0} ** m} ** n;
    dp[0][0] = grid[0][0];
    // 狀態轉移:首行
    for (1..m) |j| {
        dp[0][j] = dp[0][j - 1] + grid[0][j];
    }
    // 狀態轉移:首列
    for (1..n) |i| {
        dp[i][0] = dp[i - 1][0] + grid[i][0];
    }
    // 狀態轉移:其餘行和列
    for (1..n) |i| {
        for (1..m) |j| {
            dp[i][j] = @min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
        }
    }
    return dp[n - 1][m - 1];
}
視覺化執行

圖 14-16 展示了最小路徑和的狀態轉移過程,其走訪了整個網格,因此時間複雜度為 \(O(nm)\)

陣列 dp 大小為 \(n \times m\)因此空間複雜度為 \(O(nm)\)

最小路徑和的動態規劃過程

min_path_sum_dp_step2

min_path_sum_dp_step3

min_path_sum_dp_step4

min_path_sum_dp_step5

min_path_sum_dp_step6

min_path_sum_dp_step7

min_path_sum_dp_step8

min_path_sum_dp_step9

min_path_sum_dp_step10

min_path_sum_dp_step11

min_path_sum_dp_step12

圖 14-16   最小路徑和的動態規劃過程

4.   空間最佳化

由於每個格子只與其左邊和上邊的格子有關,因此我們可以只用一個單行陣列來實現 \(dp\) 表。

請注意,因為陣列 dp 只能表示一行的狀態,所以我們無法提前初始化首列狀態,而是在走訪每行時更新它:

min_path_sum.py
def min_path_sum_dp_comp(grid: list[list[int]]) -> int:
    """最小路徑和:空間最佳化後的動態規劃"""
    n, m = len(grid), len(grid[0])
    # 初始化 dp 表
    dp = [0] * m
    # 狀態轉移:首行
    dp[0] = grid[0][0]
    for j in range(1, m):
        dp[j] = dp[j - 1] + grid[0][j]
    # 狀態轉移:其餘行
    for i in range(1, n):
        # 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0]
        # 狀態轉移:其餘列
        for j in range(1, m):
            dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
    return dp[m - 1]
min_path_sum.cpp
/* 最小路徑和:空間最佳化後的動態規劃 */
int minPathSumDPComp(vector<vector<int>> &grid) {
    int n = grid.size(), m = grid[0].size();
    // 初始化 dp 表
    vector<int> dp(m);
    // 狀態轉移:首行
    dp[0] = grid[0][0];
    for (int j = 1; j < m; j++) {
        dp[j] = dp[j - 1] + grid[0][j];
    }
    // 狀態轉移:其餘行
    for (int i = 1; i < n; i++) {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0];
        // 狀態轉移:其餘列
        for (int j = 1; j < m; j++) {
            dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
        }
    }
    return dp[m - 1];
}
min_path_sum.java
/* 最小路徑和:空間最佳化後的動態規劃 */
int minPathSumDPComp(int[][] grid) {
    int n = grid.length, m = grid[0].length;
    // 初始化 dp 表
    int[] dp = new int[m];
    // 狀態轉移:首行
    dp[0] = grid[0][0];
    for (int j = 1; j < m; j++) {
        dp[j] = dp[j - 1] + grid[0][j];
    }
    // 狀態轉移:其餘行
    for (int i = 1; i < n; i++) {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0];
        // 狀態轉移:其餘列
        for (int j = 1; j < m; j++) {
            dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
        }
    }
    return dp[m - 1];
}
min_path_sum.cs
/* 最小路徑和:空間最佳化後的動態規劃 */
int MinPathSumDPComp(int[][] grid) {
    int n = grid.Length, m = grid[0].Length;
    // 初始化 dp 表
    int[] dp = new int[m];
    dp[0] = grid[0][0];
    // 狀態轉移:首行
    for (int j = 1; j < m; j++) {
        dp[j] = dp[j - 1] + grid[0][j];
    }
    // 狀態轉移:其餘行
    for (int i = 1; i < n; i++) {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0];
        // 狀態轉移:其餘列
        for (int j = 1; j < m; j++) {
            dp[j] = Math.Min(dp[j - 1], dp[j]) + grid[i][j];
        }
    }
    return dp[m - 1];
}
min_path_sum.go
/* 最小路徑和:空間最佳化後的動態規劃 */
func minPathSumDPComp(grid [][]int) int {
    n, m := len(grid), len(grid[0])
    // 初始化 dp 表
    dp := make([]int, m)
    // 狀態轉移:首行
    dp[0] = grid[0][0]
    for j := 1; j < m; j++ {
        dp[j] = dp[j-1] + grid[0][j]
    }
    // 狀態轉移:其餘行和列
    for i := 1; i < n; i++ {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0]
        // 狀態轉移:其餘列
        for j := 1; j < m; j++ {
            dp[j] = int(math.Min(float64(dp[j-1]), float64(dp[j]))) + grid[i][j]
        }
    }
    return dp[m-1]
}
min_path_sum.swift
/* 最小路徑和:空間最佳化後的動態規劃 */
func minPathSumDPComp(grid: [[Int]]) -> Int {
    let n = grid.count
    let m = grid[0].count
    // 初始化 dp 表
    var dp = Array(repeating: 0, count: m)
    // 狀態轉移:首行
    dp[0] = grid[0][0]
    for j in 1 ..< m {
        dp[j] = dp[j - 1] + grid[0][j]
    }
    // 狀態轉移:其餘行
    for i in 1 ..< n {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0]
        // 狀態轉移:其餘列
        for j in 1 ..< m {
            dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
        }
    }
    return dp[m - 1]
}
min_path_sum.js
/* 最小路徑和:空間最佳化後的動態規劃 */
function minPathSumDPComp(grid) {
    const n = grid.length,
        m = grid[0].length;
    // 初始化 dp 表
    const dp = new Array(m);
    // 狀態轉移:首行
    dp[0] = grid[0][0];
    for (let j = 1; j < m; j++) {
        dp[j] = dp[j - 1] + grid[0][j];
    }
    // 狀態轉移:其餘行
    for (let i = 1; i < n; i++) {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0];
        // 狀態轉移:其餘列
        for (let j = 1; j < m; j++) {
            dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
        }
    }
    return dp[m - 1];
}
min_path_sum.ts
/* 最小路徑和:空間最佳化後的動態規劃 */
function minPathSumDPComp(grid: Array<Array<number>>): number {
    const n = grid.length,
        m = grid[0].length;
    // 初始化 dp 表
    const dp = new Array(m);
    // 狀態轉移:首行
    dp[0] = grid[0][0];
    for (let j = 1; j < m; j++) {
        dp[j] = dp[j - 1] + grid[0][j];
    }
    // 狀態轉移:其餘行
    for (let i = 1; i < n; i++) {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0];
        // 狀態轉移:其餘列
        for (let j = 1; j < m; j++) {
            dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
        }
    }
    return dp[m - 1];
}
min_path_sum.dart
/* 最小路徑和:空間最佳化後的動態規劃 */
int minPathSumDPComp(List<List<int>> grid) {
  int n = grid.length, m = grid[0].length;
  // 初始化 dp 表
  List<int> dp = List.filled(m, 0);
  dp[0] = grid[0][0];
  for (int j = 1; j < m; j++) {
    dp[j] = dp[j - 1] + grid[0][j];
  }
  // 狀態轉移:其餘行
  for (int i = 1; i < n; i++) {
    // 狀態轉移:首列
    dp[0] = dp[0] + grid[i][0];
    // 狀態轉移:其餘列
    for (int j = 1; j < m; j++) {
      dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
    }
  }
  return dp[m - 1];
}
min_path_sum.rs
/* 最小路徑和:空間最佳化後的動態規劃 */
fn min_path_sum_dp_comp(grid: &Vec<Vec<i32>>) -> i32 {
    let (n, m) = (grid.len(), grid[0].len());
    // 初始化 dp 表
    let mut dp = vec![0; m];
    // 狀態轉移:首行
    dp[0] = grid[0][0];
    for j in 1..m {
        dp[j] = dp[j - 1] + grid[0][j];
    }
    // 狀態轉移:其餘行
    for i in 1..n {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0];
        // 狀態轉移:其餘列
        for j in 1..m {
            dp[j] = std::cmp::min(dp[j - 1], dp[j]) + grid[i][j];
        }
    }
    dp[m - 1]
}
min_path_sum.c
/* 最小路徑和:空間最佳化後的動態規劃 */
int minPathSumDPComp(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
    // 初始化 dp 表
    int *dp = calloc(m, sizeof(int));
    // 狀態轉移:首行
    dp[0] = grid[0][0];
    for (int j = 1; j < m; j++) {
        dp[j] = dp[j - 1] + grid[0][j];
    }
    // 狀態轉移:其餘行
    for (int i = 1; i < n; i++) {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0];
        // 狀態轉移:其餘列
        for (int j = 1; j < m; j++) {
            dp[j] = myMin(dp[j - 1], dp[j]) + grid[i][j];
        }
    }
    int res = dp[m - 1];
    // 釋放記憶體
    free(dp);
    return res;
}
min_path_sum.kt
/* 最小路徑和:空間最佳化後的動態規劃 */
fun minPathSumDPComp(grid: Array<IntArray>): Int {
    val n = grid.size
    val m = grid[0].size
    // 初始化 dp 表
    val dp = IntArray(m)
    // 狀態轉移:首行
    dp[0] = grid[0][0]
    for (j in 1..<m) {
        dp[j] = dp[j - 1] + grid[0][j]
    }
    // 狀態轉移:其餘行
    for (i in 1..<n) {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0]
        // 狀態轉移:其餘列
        for (j in 1..<m) {
            dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
        }
    }
    return dp[m - 1]
}
min_path_sum.rb
### 最小路徑和:空間最佳化後的動態規劃 ###
def min_path_sum_dp_comp(grid)
  n, m = grid.length, grid.first.length
  # 初始化 dp 表
  dp = Array.new(m, 0)
  # 狀態轉移:首行
  dp[0] = grid[0][0]
  (1...m).each { |j| dp[j] = dp[j - 1] + grid[0][j] }
  # 狀態轉移:其餘行
  for i in 1...n
    # 狀態轉移:首列
    dp[0] = dp[0] + grid[i][0]
    # 狀態轉移:其餘列
    (1...m).each { |j| dp[j] = [dp[j - 1], dp[j]].min + grid[i][j] }
  end
  dp[m - 1]
end
min_path_sum.zig
// 最小路徑和:空間最佳化後的動態規劃
fn minPathSumDPComp(comptime grid: anytype) i32 {
    comptime var n = grid.len;
    comptime var m = grid[0].len;
    // 初始化 dp 表
    var dp = [_]i32{0} ** m;
    // 狀態轉移:首行
    dp[0] = grid[0][0];
    for (1..m) |j| {
        dp[j] = dp[j - 1] + grid[0][j];
    }
    // 狀態轉移:其餘行
    for (1..n) |i| {
        // 狀態轉移:首列
        dp[0] = dp[0] + grid[i][0];
        for (1..m) |j| {
            dp[j] = @min(dp[j - 1], dp[j]) + grid[i][j];
        }
    }
    return dp[m - 1];
}
視覺化執行

歡迎在評論區留下你的見解、問題或建議